Sub-Riemannian Curvature of Carnot Groups with Rank-Two Distributions

Sub-Riemannian Curvature of Carnot Groups with Rank-Two Distributions The notion of curvature discussed in this paper is a far-going generalization of the Riemannian sectional curvature. It was first introduced by Agrachev et al. ([2015]), and it is defined for a wide class of optimal control problems: a unified framework including geometric structures such as Riemannian, sub-Riemannian, Finsler, and sub-Finsler structures. In this work, we study the generalized sectional curvature of Carnot groups with rank-two distributions. In particular, we consider the Cartan group and Carnot groups with horizontal distribution of Goursat-type. In these Carnot groups, we characterize ample and equiregular geodesics. For Carnot groups with horizontal Goursat distribution, we show that their generalized sectional curvatures depend only on the Engel part of the distribution. This family of Carnot groups contains naturally the three-dimensional Heisenberg group, as well as the Engel group. Moreover, we also show that in the Engel and Cartan groups, there exist initial covectors for which there is an infinite discrete set of times at which the corresponding ample geodesics are not equiregular. Journal of Dynamical and Control Systems Springer Journals

Sub-Riemannian Curvature of Carnot Groups with Rank-Two Distributions

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Engineering; Vibration, Dynamical Systems, Control; Calculus of Variations and Optimal Control; Optimization; Analysis; Applications of Mathematics; Systems Theory, Control
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial