Styrene epoxidation over a SBA-15-supported Mn(III) Schiff-base complex

Styrene epoxidation over a SBA-15-supported Mn(III) Schiff-base complex 2,4-Di-tert-butyl-6-((E)-(propylimino)methyl)phenol as a Schiff-base ligand was immobilized onto an amino-functionalized SBA-15 through the reaction between di-tert-butyl-salicylaldahyde and the tethered amino group. The Mn(III) metal complex of the immobilized Schiff-base ligand was proven to be an active catalyst for the epoxidation of styrene withtert-butyl hydroperoxide as a terminal oxidant. The catalysts behaved as an oxidation catalyst in the epoxidation and could be used many times without structural degradation, leaching of active manganese species and significant activity loss. It has been concluded that the reversible redox cycles of the metal center play a key role during the epoxidation reaction, as well as in the reusability of the catalysts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Styrene epoxidation over a SBA-15-supported Mn(III) Schiff-base complex

Loading next page...
 
/lp/springer_journal/styrene-epoxidation-over-a-sba-15-supported-mn-iii-schiff-base-complex-PRKuRuEegr
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/BF03036949
Publisher site
See Article on Publisher Site

Abstract

2,4-Di-tert-butyl-6-((E)-(propylimino)methyl)phenol as a Schiff-base ligand was immobilized onto an amino-functionalized SBA-15 through the reaction between di-tert-butyl-salicylaldahyde and the tethered amino group. The Mn(III) metal complex of the immobilized Schiff-base ligand was proven to be an active catalyst for the epoxidation of styrene withtert-butyl hydroperoxide as a terminal oxidant. The catalysts behaved as an oxidation catalyst in the epoxidation and could be used many times without structural degradation, leaching of active manganese species and significant activity loss. It has been concluded that the reversible redox cycles of the metal center play a key role during the epoxidation reaction, as well as in the reusability of the catalysts.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off