Study on the selective leaching of low-grade phosphate ore for beneficiation of phosphorus and rare earths using citric acid as leaching agent

Study on the selective leaching of low-grade phosphate ore for beneficiation of phosphorus and... In the study the organic/inorganic chemical leaching and enrichment technology were used for selective extraction of the dolomite which co-existed in the Zhijin low-grade phosphate ore for beneficiation phosphorous and rare earths (RE) by using citric acid as leaching agent. The effects of acid concentration, reaction time, reaction temperature, liquid/solid ratio, and particle size on P2O5 and rare earths grade and the recovery ratio of them were investigated. The results show that under the optimized experimental conditions (acid concentration 9%, reaction time 240 min, reaction temperature 40°C, liquid/solid ratio 50: 1, and ore particle size 0.18–0.125 mm) the P2O5 grade can be increased from 15.47 to 34.82%, and P2O5 recovery rate comes up to 88.02%. The rare earths are mainly enriched in the leaching residues. Meanwhile, the recovery rate of rare earths is 72.08%. ΣREO grade can be increased from 978.06 × 10–4 to 1998 × 10–4%. In addition, the reaction kinetics of the chemical reaction between citric acid and dolomite are also discussed, the results show that the leaching process is controlled by chemical reaction. The activation energy for leaching was found to be 36.6337 KJ mol–1 and k 0 was 3.67×104 s–1, and the rate of the leaching based on the chemical reaction-controlled process could be expressed as 1–(1–a)1/3 = 3.67 × 104e–36.63/RTt . Compare to the conventional process, the method provided in this study not only has advantages including higher phosphate concentration and rare earth grade, and higher recovery rate, but also using less amount of chemicals. Meanwhile, the citric acid can be recycled, avoiding discharge wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Study on the selective leaching of low-grade phosphate ore for beneficiation of phosphorus and rare earths using citric acid as leaching agent

Loading next page...
 
/lp/springer_journal/study-on-the-selective-leaching-of-low-grade-phosphate-ore-for-GK4W9tpCEF
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216070211
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial