Study on mineral surface reacted with water at temperatures above 300°C and 23MPa

Study on mineral surface reacted with water at temperatures above 300°C and 23MPa In this work, we carried out experiments on silicate mineral dissolution using a flow-through reactor from 20 to 400°C at 23 MPa. The dissolution of silicate minerals such as actinolite, diopside, and albite in water may require the breaking of more than one metal–oxygen bond type. Different metal elements in silicate minerals have different release rates and the dissolution product is often non-stoichiometric. Na, Mg, Fe, and Ca dissolve faster than Si at T < 300°C. At T ≥ 300°C, the release rate of Si is higher than that of the other metals. The molar concentration ratios of the dissolving metal Mi versus Si such as Mg/Si, Ca/Si and Al/Si, which are the release ratios in the effluent solutions, are often different from the molar ratios of these elements in the minerals. The results show that the incongruent dissolution of minerals is related to surface chemical modifications. Non-stoichiometric dissolution is caused by the formation of a non-stoichiometric leaching layer at the surface or by the presence of a secondary mineral at the surface. Our experiments indicate that the dissolution of most silicate minerals is close to stoichiometric at 200 and 300°C, e.g., for actinolite and albite at 300°C. The surfaces after reaction with aqueous solutions were investigated using SEM and TEM. At T < 300°C, the mineral surfaces (e.g., for actinolite) after the reaction with water are slightly Si-rich and slightly Fe (and/or Mg, Ca) deficient. In contrast, at T ≥ 300°C, the surfaces after reaction with water are slightly Fe-rich and somewhat Si deficient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Study on mineral surface reacted with water at temperatures above 300°C and 23MPa

Loading next page...
 
/lp/springer_journal/study-on-mineral-surface-reacted-with-water-at-temperatures-above-300-nSW70I7Ixu
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0281-3
Publisher site
See Article on Publisher Site

Abstract

In this work, we carried out experiments on silicate mineral dissolution using a flow-through reactor from 20 to 400°C at 23 MPa. The dissolution of silicate minerals such as actinolite, diopside, and albite in water may require the breaking of more than one metal–oxygen bond type. Different metal elements in silicate minerals have different release rates and the dissolution product is often non-stoichiometric. Na, Mg, Fe, and Ca dissolve faster than Si at T < 300°C. At T ≥ 300°C, the release rate of Si is higher than that of the other metals. The molar concentration ratios of the dissolving metal Mi versus Si such as Mg/Si, Ca/Si and Al/Si, which are the release ratios in the effluent solutions, are often different from the molar ratios of these elements in the minerals. The results show that the incongruent dissolution of minerals is related to surface chemical modifications. Non-stoichiometric dissolution is caused by the formation of a non-stoichiometric leaching layer at the surface or by the presence of a secondary mineral at the surface. Our experiments indicate that the dissolution of most silicate minerals is close to stoichiometric at 200 and 300°C, e.g., for actinolite and albite at 300°C. The surfaces after reaction with aqueous solutions were investigated using SEM and TEM. At T < 300°C, the mineral surfaces (e.g., for actinolite) after the reaction with water are slightly Si-rich and slightly Fe (and/or Mg, Ca) deficient. In contrast, at T ≥ 300°C, the surfaces after reaction with water are slightly Fe-rich and somewhat Si deficient.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 5, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off