Study of two-phase flows in reduced gravity using ground based experiments

Study of two-phase flows in reduced gravity using ground based experiments Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59® as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Study of two-phase flows in reduced gravity using ground based experiments

Loading next page...
 
/lp/springer_journal/study-of-two-phase-flows-in-reduced-gravity-using-ground-based-pYz9ZqRboY
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0321-3
Publisher site
See Article on Publisher Site

Abstract

Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59® as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 6, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off