Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Study of the EDM performance to produce a stable process and surface modification

Study of the EDM performance to produce a stable process and surface modification In this work, the effect of pulse current and pulse duration in die-sinking electrical discharge machining (EDM) on the machining characteristics of Ti-6Al-4V alloy is studied. The EDM characteristics, including the electrode wear ratio (EWR), the material removal rate (MRR), and the surface roughness (SR), are used to measure the effect of machining. An increase in the intensity of the pulse current from 2.5 to 5 A produces a slow increase in EWR, MRR, and SR. An increase in the intensity of the pulse current from 5 to 7 A produces a rapid increase in EWR, MRR, and SR. Control charts are basic and powerful tools for controlling statistical processes and are widely used to monitor manufacturing processes and ensure good EDM quality. EWR, MRR, and SR are normal distributions, and the regression curves for the data are straight lines. All of the data points vary randomly around the centerline, which follows the Shewhart criteria and shows that the EDM process and product performance are under control and stable over time. After EDM, the surface exhibits an irregular fused structure, with pinholes, micro voids, globule debris, and many damaged surfaces. Oxygen plasma etching and surface modification after EDM reduce these surface defects, so finer and flatter surfaces can be achieved. Moreover, fatigue life can be enhanced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Study of the EDM performance to produce a stable process and surface modification

Loading next page...
1
 
/lp/springer_journal/study-of-the-edm-performance-to-produce-a-stable-process-and-surface-hne7rWsqdS

References (27)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-017-1315-9
Publisher site
See Article on Publisher Site

Abstract

In this work, the effect of pulse current and pulse duration in die-sinking electrical discharge machining (EDM) on the machining characteristics of Ti-6Al-4V alloy is studied. The EDM characteristics, including the electrode wear ratio (EWR), the material removal rate (MRR), and the surface roughness (SR), are used to measure the effect of machining. An increase in the intensity of the pulse current from 2.5 to 5 A produces a slow increase in EWR, MRR, and SR. An increase in the intensity of the pulse current from 5 to 7 A produces a rapid increase in EWR, MRR, and SR. Control charts are basic and powerful tools for controlling statistical processes and are widely used to monitor manufacturing processes and ensure good EDM quality. EWR, MRR, and SR are normal distributions, and the regression curves for the data are straight lines. All of the data points vary randomly around the centerline, which follows the Shewhart criteria and shows that the EDM process and product performance are under control and stable over time. After EDM, the surface exhibits an irregular fused structure, with pinholes, micro voids, globule debris, and many damaged surfaces. Oxygen plasma etching and surface modification after EDM reduce these surface defects, so finer and flatter surfaces can be achieved. Moreover, fatigue life can be enhanced.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 14, 2017

There are no references for this article.