Study of Separation Characteristics of Micro-groove Rotary Seal Considering Different Cavitation Boundary Conditions

Study of Separation Characteristics of Micro-groove Rotary Seal Considering Different Cavitation... Micro-grooves have superior hydrodynamic characteristics; therefore, the operating state of the micro-groove rotary seals (MGRSs) used in wet clutches of vehicles change from mixed lubrication to full-film hydrodynamic lubrication with increased rotating speed. These transition characteristics of the lubrication state of the MGRS are called “separation characteristics.” However, simultaneously the increase in rotating speed also leads to the cavitation effect. In contrast to the convergent wedge-shaped gap, “negative effects” exist in the diverging gap that lead to the reduction in the hydrodynamic pressure on the sealing end face. When the pressure is less than the cavitation pressure, the oil film undergoes cavitation and then ruptures. Thus, a large cavitation region reduces the bearing capacity of the oil film. Cavitation effects significantly influence the separation characteristics of the MGRS. Here we report on a theoretical model that has been developed through coupling asperity contact, fluid lubrication with micro-grooves and axial motion dynamic characteristics of the seal. Separation characteristics of the MGRS under Reynolds and Jakobsson–Floberg–Olsson (JFO) cavitation boundary conditions are systematically investigated in this study. The results show that pressure distribution and fluid bearing force under the Reynolds cavitation boundary condition are larger than those under the JFO condition, while friction torques are almost the same under both conditions. The cavitation region is observed in experiments and found to become larger with increases in speed. The JFO cavitation boundary condition predicts larger separation speed of the MGRS than does the Reynolds cavitation boundary, and the separation speed predicted by the JFO cavitation boundary condition is significantly closer to the experimental result than that predicted by the Reynolds condition. For the best separation characteristics of the MGRS, selected micro-groove parameters are as follows: N g = 35–40, β = 17–23° and h g = 15–25 μm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

Study of Separation Characteristics of Micro-groove Rotary Seal Considering Different Cavitation Boundary Conditions

Loading next page...
 
/lp/springer_journal/study-of-separation-characteristics-of-micro-groove-rotary-seal-HhfrbxCJM9
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-017-0893-x
Publisher site
See Article on Publisher Site

Abstract

Micro-grooves have superior hydrodynamic characteristics; therefore, the operating state of the micro-groove rotary seals (MGRSs) used in wet clutches of vehicles change from mixed lubrication to full-film hydrodynamic lubrication with increased rotating speed. These transition characteristics of the lubrication state of the MGRS are called “separation characteristics.” However, simultaneously the increase in rotating speed also leads to the cavitation effect. In contrast to the convergent wedge-shaped gap, “negative effects” exist in the diverging gap that lead to the reduction in the hydrodynamic pressure on the sealing end face. When the pressure is less than the cavitation pressure, the oil film undergoes cavitation and then ruptures. Thus, a large cavitation region reduces the bearing capacity of the oil film. Cavitation effects significantly influence the separation characteristics of the MGRS. Here we report on a theoretical model that has been developed through coupling asperity contact, fluid lubrication with micro-grooves and axial motion dynamic characteristics of the seal. Separation characteristics of the MGRS under Reynolds and Jakobsson–Floberg–Olsson (JFO) cavitation boundary conditions are systematically investigated in this study. The results show that pressure distribution and fluid bearing force under the Reynolds cavitation boundary condition are larger than those under the JFO condition, while friction torques are almost the same under both conditions. The cavitation region is observed in experiments and found to become larger with increases in speed. The JFO cavitation boundary condition predicts larger separation speed of the MGRS than does the Reynolds cavitation boundary, and the separation speed predicted by the JFO cavitation boundary condition is significantly closer to the experimental result than that predicted by the Reynolds condition. For the best separation characteristics of the MGRS, selected micro-groove parameters are as follows: N g = 35–40, β = 17–23° and h g = 15–25 μm.

Journal

Tribology LettersSpringer Journals

Published: Aug 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off