Study of bubble-induced turbulence in upward laminar bubbly pipe flows measured with a two-phase particle image velocimetry

Study of bubble-induced turbulence in upward laminar bubbly pipe flows measured with a two-phase... In the present study, focusing on characterizing the bubble-induced agitation (turbulence), spatially varying flow statistics of gas and liquid phases in laminar upward bubbly flows (Reynolds number of 750) with varying mean void fraction are investigated using a two-phase high-speed particle image velocimetry. As the flow develops along the vertical direction, bubbles with small-to-moderate void fractions, which were intentionally distributed asymmetrically at the inlet, migrate fast and show symmetric distributions of wall or intermediate peaking. Meanwhile, the mean liquid velocity saturates relatively slowly to a flat distribution at the core region. Despite small void fractions considered, the bubbles generate a substantial turbulence, which increases with increasing mean void fraction. Interestingly, it is found that the mean vertical velocity, bubble-induced normal stress in radial direction, and Reynolds stress profiles match well with those of a single-phase turbulent flow at a moderate Reynolds number (e.g., 104), indicating the similarity between the bubble-induced turbulence and wall-shear-generated turbulence in a single-phase flow. Previously suggested scaling relations are confirmed such that the mean bubble rise velocity and bubble-induced normal stress (in both vertical and radial directions) scale with mean volume void fraction as a power of −0.1 and 0.4, respectively. Finally, based on the analysis of measured bubble dynamics (rise in an oscillating path), a theoretical model for two-phase turbulent (Reynolds) stress is proposed, which includes the contributions by the non-uniform distributions of local void fraction and relative bubble rise velocity, and is further validated with the present experimental data to show a good agreement with each other. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Study of bubble-induced turbulence in upward laminar bubbly pipe flows measured with a two-phase particle image velocimetry

Loading next page...
 
/lp/springer_journal/study-of-bubble-induced-turbulence-in-upward-laminar-bubbly-pipe-flows-gb8oKKRQEe
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2144-6
Publisher site
See Article on Publisher Site

Abstract

In the present study, focusing on characterizing the bubble-induced agitation (turbulence), spatially varying flow statistics of gas and liquid phases in laminar upward bubbly flows (Reynolds number of 750) with varying mean void fraction are investigated using a two-phase high-speed particle image velocimetry. As the flow develops along the vertical direction, bubbles with small-to-moderate void fractions, which were intentionally distributed asymmetrically at the inlet, migrate fast and show symmetric distributions of wall or intermediate peaking. Meanwhile, the mean liquid velocity saturates relatively slowly to a flat distribution at the core region. Despite small void fractions considered, the bubbles generate a substantial turbulence, which increases with increasing mean void fraction. Interestingly, it is found that the mean vertical velocity, bubble-induced normal stress in radial direction, and Reynolds stress profiles match well with those of a single-phase turbulent flow at a moderate Reynolds number (e.g., 104), indicating the similarity between the bubble-induced turbulence and wall-shear-generated turbulence in a single-phase flow. Previously suggested scaling relations are confirmed such that the mean bubble rise velocity and bubble-induced normal stress (in both vertical and radial directions) scale with mean volume void fraction as a power of −0.1 and 0.4, respectively. Finally, based on the analysis of measured bubble dynamics (rise in an oscillating path), a theoretical model for two-phase turbulent (Reynolds) stress is proposed, which includes the contributions by the non-uniform distributions of local void fraction and relative bubble rise velocity, and is further validated with the present experimental data to show a good agreement with each other.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off