Study of Arabidopsis thalianaresistome in response to cucumber mosaic virus infection using whole genome microarray

Study of Arabidopsis thalianaresistome in response to cucumber mosaic virus infection using whole... The plant innate immune response is mediated by resistance (R) genes and involves hypersensitive response (HR) cell death. During resistance responses, the host undergoes net changes in the transcriptome. To understand these changes, we generated a whole genome transcript profile for RCY1-mediated resistance to cucumber mosaic virus strain Y (CMV-Y) in Arabidopsis. Using a very stringent selection criterion, we identified 444 putative factors belonging to nine different functional classes that show significant transcript regulation during Arabidopsis-CMV-Y interaction. Genes with unknown function formed the largest class. Other functional classes represented in the resistome include kinases and phosphatases, protein degradation machinery/proteases, transcriptional regulators, and others. Interestingly, several of the unknown function genes possess well characterized domains and secondly many genes encode small peptides with less than 100 amino acids. Analysis of 1.1 kb promoter regions of the 444 genes revealed that 9 out of the 12 known cis-binding elements are significantly associated with pathogen responsive cluster. Location and distribution of five prominent binding elements for select group of disease resistance related and unknown function genes is presented. The analysis also revealed 80 defense-responsive genes that might participate in Rgene-mediated defense against both viral and bacterial pathogens. In addition, chromosome distribution of genes that respond to bacterial and viral pathogens suggests that they are located in small gene clusters and may be transcriptionally co-regulated. Exploring the precise function of the new genes identified in this analysis will offer new insights into plant defense. Plant Molecular Biology Springer Journals

Study of Arabidopsis thalianaresistome in response to cucumber mosaic virus infection using whole genome microarray

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial