Studies on the interaction mechanism between CXS and papain by spectroscopic and molecular modeling methods

Studies on the interaction mechanism between CXS and papain by spectroscopic and molecular... We have studied the interaction between cefuroxime sodium (CXS) and papain at different temperatures by a fluorescence method, and confirmed that the mechanism of fluorescence quenching of CXS to papain is mainly static quenching. We also determined the binding constant K. Based on the thermodynamic functions at different temperatures, the results show that the major forces between CXS and papain are van der Waals’ forces and H bond. According to the Forster non-radiation energy transfer mechanism, we determined the binding distance between CXS and papain, and studied the confirmation effect of CXS to papain by synchronous fluorescence and UV–Vis spectroscopy. Molecular simulations show that the binding types of CXS and papain are van der Waals’ forces, hydrophobic interaction, and H-bond. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Studies on the interaction mechanism between CXS and papain by spectroscopic and molecular modeling methods

Loading next page...
 
/lp/springer_journal/studies-on-the-interaction-mechanism-between-cxs-and-papain-by-cFpM5d0hh0
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0682-y
Publisher site
See Article on Publisher Site

Abstract

We have studied the interaction between cefuroxime sodium (CXS) and papain at different temperatures by a fluorescence method, and confirmed that the mechanism of fluorescence quenching of CXS to papain is mainly static quenching. We also determined the binding constant K. Based on the thermodynamic functions at different temperatures, the results show that the major forces between CXS and papain are van der Waals’ forces and H bond. According to the Forster non-radiation energy transfer mechanism, we determined the binding distance between CXS and papain, and studied the confirmation effect of CXS to papain by synchronous fluorescence and UV–Vis spectroscopy. Molecular simulations show that the binding types of CXS and papain are van der Waals’ forces, hydrophobic interaction, and H-bond.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off