Studies of the photoexcited states of the fullerenes, C60 and C70

Studies of the photoexcited states of the fullerenes, C60 and C70 The spectra of C60 and C70 were examined using low-temperature photoluminescence and quasi-elastic light scattering spectroscopy. A detailed vibronic analysis of the lowest triplet and singlet excited states of C70 is obtained. The lowest triplet state is identified as a 3E1′ state and the vibronic structure consists primarily of Herzberg-Teller active e2′ modes. The intensity of the electronic origin is comparable to the vibronically induced intensity and is extraordinarily solvent sensitive. The spectrum of monosubstituted C60 is shown to be qualitatively similar to that of C60 in polar or strongly complexing solvents. The principal effect of solvent interaction or substitution is to induce dipole intensity in the orbitally forbidden electronic origins of the luminescent states of C60 and C70. The Rayleigh scattering of fullerene solutions illustrates that solute aggregation occurs easily and that aggregate nucleation is strongly affected by surfaces in contact with the solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Studies of the photoexcited states of the fullerenes, C60 and C70

Loading next page...
 
/lp/springer_journal/studies-of-the-photoexcited-states-of-the-fullerenes-c60-and-c70-mRf20mthBC
Publisher
Springer Netherlands
Copyright
Copyright © 1997 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856797X00033
Publisher site
See Article on Publisher Site

Abstract

The spectra of C60 and C70 were examined using low-temperature photoluminescence and quasi-elastic light scattering spectroscopy. A detailed vibronic analysis of the lowest triplet and singlet excited states of C70 is obtained. The lowest triplet state is identified as a 3E1′ state and the vibronic structure consists primarily of Herzberg-Teller active e2′ modes. The intensity of the electronic origin is comparable to the vibronically induced intensity and is extraordinarily solvent sensitive. The spectrum of monosubstituted C60 is shown to be qualitatively similar to that of C60 in polar or strongly complexing solvents. The principal effect of solvent interaction or substitution is to induce dipole intensity in the orbitally forbidden electronic origins of the luminescent states of C60 and C70. The Rayleigh scattering of fullerene solutions illustrates that solute aggregation occurs easily and that aggregate nucleation is strongly affected by surfaces in contact with the solution.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off