Structured Detection of Interactions with the Directed Lasso

Structured Detection of Interactions with the Directed Lasso When considering low-dimensional gene–treatment or gene–environment interactions, we might suspect groups of genes to interact with treatment or environment in a similar way. For example, genes associated with related biological processes might interact with an environmental factor or a clinical treatment in its effect on a phenotype correspondingly. We use the idea of a structured interaction model together with penalized regression to limit the model complexity in a model in which we believe the interactions might behave in a similar way. We propose the directed lasso, a regression modeling strategy using a pairwise fused lasso penalty to encourage interaction model simplicity through fusion of effect size. We compare the performance of the directed lasso to the lasso and other methods in a simulation study and on data sampled from a breast cancer clinical trial. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics in Biosciences Springer Journals

Structured Detection of Interactions with the Directed Lasso

Loading next page...
 
/lp/springer_journal/structured-detection-of-interactions-with-the-directed-lasso-nzoddlci7s
Publisher
Springer US
Copyright
Copyright © 2016 by International Chinese Statistical Association
Subject
Statistics; Statistics for Life Sciences, Medicine, Health Sciences; Biostatistics; Theoretical Ecology/Statistics
ISSN
1867-1764
eISSN
1867-1772
D.O.I.
10.1007/s12561-016-9184-6
Publisher site
See Article on Publisher Site

Abstract

When considering low-dimensional gene–treatment or gene–environment interactions, we might suspect groups of genes to interact with treatment or environment in a similar way. For example, genes associated with related biological processes might interact with an environmental factor or a clinical treatment in its effect on a phenotype correspondingly. We use the idea of a structured interaction model together with penalized regression to limit the model complexity in a model in which we believe the interactions might behave in a similar way. We propose the directed lasso, a regression modeling strategy using a pairwise fused lasso penalty to encourage interaction model simplicity through fusion of effect size. We compare the performance of the directed lasso to the lasso and other methods in a simulation study and on data sampled from a breast cancer clinical trial.

Journal

Statistics in BiosciencesSpringer Journals

Published: Nov 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off