Structure of iron and manganese ions substituted in the framework of nanoporous AlPO-5 material

Structure of iron and manganese ions substituted in the framework of nanoporous AlPO-5 material The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Structure of iron and manganese ions substituted in the framework of nanoporous AlPO-5 material

Loading next page...
 
/lp/springer_journal/structure-of-iron-and-manganese-ions-substituted-in-the-framework-of-MeZAHu59RD
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856708784795644
Publisher site
See Article on Publisher Site

Abstract

The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off