Structure-Function Relationships in Pectin Emulsification

Structure-Function Relationships in Pectin Emulsification The emulsifying characteristics of pectins isolated from six different okra genotypes were investigated and their structure-function relationships have been evaluated. Emulsion formation and stabilization of acidic oil-in-water emulsions (pH 2.0, φ = 0.1) were studied by means of droplet size distribution, ζ-potential measurements, viscometry, interfacial composition analysis and fluorescence microscopy. Fresh and aged emulsions differed in terms of droplet size distribution, interfacial protein and pectin concentrations (Γ) depending on the molecular properties of pectin that was used. Specifically, pectins with intermediate length of RG-I branching with molar ratio of (Ara + Gal)/Rha between 2 and 3 exhibit the optimum emulsification capacity whereas samples with the molar ratio outside this range do not favour emulsification. Additionally, low amounts of RG-I segments (HG/RG-I > 2) improve long term stability of emulsions as opposed to the samples that contain high amounts of RG-I (HG/RG-I < 2) which lead to long term instability. Protein was not found to be the controlling factor for the stability of the dispersions. The present results show that rational design of pectin should be sought before application as functional ingredient in food and/or pharmaceutical systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Biophysics Springer Journals

Structure-Function Relationships in Pectin Emulsification

Loading next page...
 
/lp/springer_journal/structure-function-relationships-in-pectin-emulsification-UUX0oynSOs
Publisher
Springer US
Copyright
Copyright © 2018 by The Author(s)
Subject
Chemistry; Food Science; Biological and Medical Physics, Biophysics; Analytical Chemistry
ISSN
1557-1858
eISSN
1557-1866
D.O.I.
10.1007/s11483-017-9513-4
Publisher site
See Article on Publisher Site

Abstract

The emulsifying characteristics of pectins isolated from six different okra genotypes were investigated and their structure-function relationships have been evaluated. Emulsion formation and stabilization of acidic oil-in-water emulsions (pH 2.0, φ = 0.1) were studied by means of droplet size distribution, ζ-potential measurements, viscometry, interfacial composition analysis and fluorescence microscopy. Fresh and aged emulsions differed in terms of droplet size distribution, interfacial protein and pectin concentrations (Γ) depending on the molecular properties of pectin that was used. Specifically, pectins with intermediate length of RG-I branching with molar ratio of (Ara + Gal)/Rha between 2 and 3 exhibit the optimum emulsification capacity whereas samples with the molar ratio outside this range do not favour emulsification. Additionally, low amounts of RG-I segments (HG/RG-I > 2) improve long term stability of emulsions as opposed to the samples that contain high amounts of RG-I (HG/RG-I < 2) which lead to long term instability. Protein was not found to be the controlling factor for the stability of the dispersions. The present results show that rational design of pectin should be sought before application as functional ingredient in food and/or pharmaceutical systems.

Journal

Food BiophysicsSpringer Journals

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off