Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves

Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.)... The primary leaves of young barley seedlings contain two major, extracellular, acid-soluble proteins of ca. 22 and 23 kDa apparent molecular mass. These proteins disappeared from the intercellular washing fluid upon stress treatments that enhanced H2O2 levels and that induced resistance to subsequent challenge by the powdery mildew fungus Erysiphe graminis f. sp. hordei. A partial peptide sequence of the 22 kDa protein was determined, and a cDNA clone was isolated. The 22 kDa protein belongs the the group of germin-like proteins (GLPs) and was designated HvGLP1. Despite its similarity to germin, i.e. oxalate oxidase, no oxalate oxidase activity of HvGLP1 could be detected. The RNA and soluble protein of HvGLP1 was highly abundant in young leaves, less abundant in older leaves and absent in roots. HvGLP1 RNA oscillated with a circadian rhythm, the minimum and maximum of RNA abundance being at the end of the dark and light periods, respectively. Heat and H2O2 treatment as well as pathogen infection caused disappearance of HvGLP1 protein from the fraction of soluble proteins of the intercellular space. HvGLP1 protein could be re-solubilized from cell walls of heat- or H2O2-treated leaves by boiling in SDS suggesting non-covalent cross linking. Although a physiological role of HvGLP1 insolubilization is still open, the protein may serve as marker for oxidative stress in cereals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves

Loading next page...
 
/lp/springer_journal/structure-expression-and-localization-of-a-germin-like-protein-in-ubS4DJbwZ3

References (32)

Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1005982715972
Publisher site
See Article on Publisher Site

Abstract

The primary leaves of young barley seedlings contain two major, extracellular, acid-soluble proteins of ca. 22 and 23 kDa apparent molecular mass. These proteins disappeared from the intercellular washing fluid upon stress treatments that enhanced H2O2 levels and that induced resistance to subsequent challenge by the powdery mildew fungus Erysiphe graminis f. sp. hordei. A partial peptide sequence of the 22 kDa protein was determined, and a cDNA clone was isolated. The 22 kDa protein belongs the the group of germin-like proteins (GLPs) and was designated HvGLP1. Despite its similarity to germin, i.e. oxalate oxidase, no oxalate oxidase activity of HvGLP1 could be detected. The RNA and soluble protein of HvGLP1 was highly abundant in young leaves, less abundant in older leaves and absent in roots. HvGLP1 RNA oscillated with a circadian rhythm, the minimum and maximum of RNA abundance being at the end of the dark and light periods, respectively. Heat and H2O2 treatment as well as pathogen infection caused disappearance of HvGLP1 protein from the fraction of soluble proteins of the intercellular space. HvGLP1 protein could be re-solubilized from cell walls of heat- or H2O2-treated leaves by boiling in SDS suggesting non-covalent cross linking. Although a physiological role of HvGLP1 insolubilization is still open, the protein may serve as marker for oxidative stress in cereals.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

There are no references for this article.