Structure and phase transformations in the surface layers of composite ceramic materials based on the systems (TiN–AlN)–(TiN–Cr3C2) and (TiN–AlN)–(Ni–Cr)–(TiN–Cr3C2) with high-temperature oxidation under conditions of concentrated solar radiation

Structure and phase transformations in the surface layers of composite ceramic materials based on... Results are provided for a study of the formation mechanism and conditions for high-temperature corrosion-resistant coatings, which are formed in air (>1500°C) with cyclic thermal changes under the action of concentrated energy sources. It is established that in composite materials of the systems (TiN–AlN)–(TiN–Cr3C2) and (TiN–AlN)–(Ni–Cr)–(TiN–Cr3C2) a complex oxide film forms that has good adhesion to a base and undergoes further composite oxidation, i.e., it promotes an increase in its scaling resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Structure and phase transformations in the surface layers of composite ceramic materials based on the systems (TiN–AlN)–(TiN–Cr3C2) and (TiN–AlN)–(Ni–Cr)–(TiN–Cr3C2) with high-temperature oxidation under conditions of concentrated solar radiation

Loading next page...
 
/lp/springer_journal/structure-and-phase-transformations-in-the-surface-layers-of-composite-cRdK9ax4VX
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, Inc.
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-011-9363-4
Publisher site
See Article on Publisher Site

Abstract

Results are provided for a study of the formation mechanism and conditions for high-temperature corrosion-resistant coatings, which are formed in air (>1500°C) with cyclic thermal changes under the action of concentrated energy sources. It is established that in composite materials of the systems (TiN–AlN)–(TiN–Cr3C2) and (TiN–AlN)–(Ni–Cr)–(TiN–Cr3C2) a complex oxide film forms that has good adhesion to a base and undergoes further composite oxidation, i.e., it promotes an increase in its scaling resistance.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Jun 4, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off