Structure and function correlations at the imprinted mouse Snrpn locus

Structure and function correlations at the imprinted mouse Snrpn locus The human SNRPN gene maps within Chromosome (Chr) 15q11-q13, the region responsible for Prader-Willi syndrome (PWS) and Angelman syndrome (AS). As one of several 15q11-q13 transcripts expressed from the paternal allele-only, SNRPN is a candidate gene to explain at least some of the PWS phenotype in human and in genetic mouse models. The promoter and first exon of the SNRPN gene also correspond to an imprinting center element responsible for resetting of the maternal to paternal imprints within 15q11-q13 during spermatogenesis. Through characterization of the imprinted murine Snrpn locus in mouse Chr 7C, we have found that the gene structure is very similar to the human, with ten conserved exons spanning 22 kb, the last seven of which are tightly clustered. The promoter of Snrpn is differentially methylated in ES cells and adult tissues, supporting a role for DNA methylation at this site in somatic establishment and/or maintenance of Snrpn imprinting. The first intron of the mouse and human genes contains structurally conserved G-rich clustered repeats which may play a role in establishing DNA methylation patterns associated with imprinting of this gene. On the basis of the conserved structural and imprinted features of the human SNRPN and mouse Snrpn genes, we suggest that imprinting mechanisms are conserved between human and mouse. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Structure and function correlations at the imprinted mouse Snrpn locus

Loading next page...
 
/lp/springer_journal/structure-and-function-correlations-at-the-imprinted-mouse-snrpn-locus-ABguKtYe7r
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900868
Publisher site
See Article on Publisher Site

Abstract

The human SNRPN gene maps within Chromosome (Chr) 15q11-q13, the region responsible for Prader-Willi syndrome (PWS) and Angelman syndrome (AS). As one of several 15q11-q13 transcripts expressed from the paternal allele-only, SNRPN is a candidate gene to explain at least some of the PWS phenotype in human and in genetic mouse models. The promoter and first exon of the SNRPN gene also correspond to an imprinting center element responsible for resetting of the maternal to paternal imprints within 15q11-q13 during spermatogenesis. Through characterization of the imprinted murine Snrpn locus in mouse Chr 7C, we have found that the gene structure is very similar to the human, with ten conserved exons spanning 22 kb, the last seven of which are tightly clustered. The promoter of Snrpn is differentially methylated in ES cells and adult tissues, supporting a role for DNA methylation at this site in somatic establishment and/or maintenance of Snrpn imprinting. The first intron of the mouse and human genes contains structurally conserved G-rich clustered repeats which may play a role in establishing DNA methylation patterns associated with imprinting of this gene. On the basis of the conserved structural and imprinted features of the human SNRPN and mouse Snrpn genes, we suggest that imprinting mechanisms are conserved between human and mouse.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off