Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco

Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana... The structure and nuclear genomic organization of the gene family encoding putrescine N-methyltransferase (PMT), the key enzyme in diverting polyamine metabolism towards the biosynthesis of nicotine and related alkaloids, was examined in Nicotiana tabacum. Five genes encoding PMT are present in the N. tabacum genome and all are expressed. The complete coding region and immediate 5′- and 3′- flanking regions were characterized for four members of the gene family and the Exon 1 region of the fifth member of the family was determined. Comparison of the nucleotide and deduced amino acid sequences of the N. tabacum PMT genes with those of presumed progenitor species, N. sylvestris, N. tomentosiformis and N. otophora, revealed that three members of the N. tabacum PMT gene family were most similar to the three genes present in N. sylvestris, whereas the two remaining PMT genes were similar to PMT genes present in N. tomentosiformis and N. otophora genomes, respectively. These data are consistent with an evolutionary origin of N. tabacum resulting from a cross involving N. sylvestris and an introgressed hybrid between N. tomentosiformis and N. otophora. The five PMT genes present in N. tabacum are expressed in the roots of wild-type plants, but not in other organs. The steady-state level of all five PMT transcripts is transiently increased in roots following topping (removal of the floral meristem), although the maximum level of induction for the individual transcripts varies considerably. In contrast to wild-type plants, no increase in PMT transcript levels was observed in a low-alkaloid (nic1nic2) mutant of Burley 21. These data support a role for nic1 and nic2 in the global regulation of alkaloid formation in tobacco and provide for the first time molecular confirmation of the presumed origin of cultivated tobacco. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco

Loading next page...
 
/lp/springer_journal/structure-and-expression-of-the-gene-family-encoding-putrescine-n-tZyeE0qFGu
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006342018991
Publisher site
See Article on Publisher Site

Abstract

The structure and nuclear genomic organization of the gene family encoding putrescine N-methyltransferase (PMT), the key enzyme in diverting polyamine metabolism towards the biosynthesis of nicotine and related alkaloids, was examined in Nicotiana tabacum. Five genes encoding PMT are present in the N. tabacum genome and all are expressed. The complete coding region and immediate 5′- and 3′- flanking regions were characterized for four members of the gene family and the Exon 1 region of the fifth member of the family was determined. Comparison of the nucleotide and deduced amino acid sequences of the N. tabacum PMT genes with those of presumed progenitor species, N. sylvestris, N. tomentosiformis and N. otophora, revealed that three members of the N. tabacum PMT gene family were most similar to the three genes present in N. sylvestris, whereas the two remaining PMT genes were similar to PMT genes present in N. tomentosiformis and N. otophora genomes, respectively. These data are consistent with an evolutionary origin of N. tabacum resulting from a cross involving N. sylvestris and an introgressed hybrid between N. tomentosiformis and N. otophora. The five PMT genes present in N. tabacum are expressed in the roots of wild-type plants, but not in other organs. The steady-state level of all five PMT transcripts is transiently increased in roots following topping (removal of the floral meristem), although the maximum level of induction for the individual transcripts varies considerably. In contrast to wild-type plants, no increase in PMT transcript levels was observed in a low-alkaloid (nic1nic2) mutant of Burley 21. These data support a role for nic1 and nic2 in the global regulation of alkaloid formation in tobacco and provide for the first time molecular confirmation of the presumed origin of cultivated tobacco.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off