Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system

Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow... Secondary injection of the fuel, also referred to as staged combustion, is being studied by gas turbine manufacturers as a means of increasing the power output of the gas turbine systems with minimal contribution to NO x emission. A reacting jet issuing into a swirling, vitiated crossflow operating at gas turbine relevant conditions was investigated as a means of secondary injection. In this study, the flow field of the reacting jet was investigated using high repetition rate (HRR) (5 kHz), two-component particle imaging velocimetry and OH-PLIF. In applications similar to the one currently studied in this work, viz. secondary injection of fuel in a gas turbine combustor, rapid mixing and chemical reaction in the near field of jet injection are desirable. Based on our analysis, it is hypothesized that the shear layer and wake field vortices play a significant role in stabilizing a steady reaction front within the near wake region of the jet. Premixed jets composed of natural gas and air were injected through an extended nozzle into the vitiated flow downstream of a low-swirl burner that produced the vitiated, swirled flow. The jet-to-crossflow momentum flux ratio was varied to study the corresponding effect on the flow field. The time-averaged flow field shows a steady wake vortex very similar to that seen in the wake of a cylindrical bluff body which helps to stabilize the reaction zone within the wake of the jet. The HRR data acquisition also provided temporally resolved information on the transient structure of the wake flow associated with the reacting jet in crossflow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system

Loading next page...
 
/lp/springer_journal/structure-and-dynamics-of-the-wake-of-a-reacting-jet-injected-into-a-tDC0GlaYJ0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1885-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial