Structural, spectral, quantum chemical and thermal studies on a new NLO crystal: guanidinium cinnamate

Structural, spectral, quantum chemical and thermal studies on a new NLO crystal: guanidinium... New organic non-linear optical (NLO) single crystals of guanidinium cinnamate were crystallized by solvent evaporation solution growth technique and the crystal and molecular structure were determined by single crystal X-ray diffraction. The crystal packing is dominated by classical N–H···O hydrogen bonding interactions. Due to deficiency of acceptor atoms compared to the donor sites, two unusual ring R2 1(6) motifs are formed through two N–H···O hydrogen bonds. These ring motifs are further connected through chain C2 2(6) or C2 2(8) motifs along the b-axis of the unit cell. Further, these chain and ring motifs are cross-linked through another N–H···O hydrogen bond leading to classical ring R2 2(8) motif. These chain and ring motifs are interlinked with each other to form secondary ring R6 6(14)/R6 6(16) motifs. The molecular geometry of the asymmetric part of the unit cell was optimized theoretically by density functional theory using the B3LYP function with 6-311 + + G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which showed significant agreement. The intermolecular interactions of the title compound were analyzed by the Hirshfeld surfaces. The computed hyperpolarizability values showed that the compound is a good candidate for NLO applications. The chemical hardness, electro-negativity and chemical potential of the molecule were computed by HOMO–LUMO plot. The lower band gap of the frontier orbitals indicates the suitability of fabrication of the material for non-linear optoelectronic applications. Journal of Materials Science: Materials in Electronics Springer Journals

Structural, spectral, quantum chemical and thermal studies on a new NLO crystal: guanidinium cinnamate

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial