Structural, physiological, and biochemical aspects of salinity tolerance of halophytes

Structural, physiological, and biochemical aspects of salinity tolerance of halophytes Modern concepts on structural, physiological, and biochemical aspects of salt tolerance of higher plants were considered. Integral physiological processes, such as growth and photosynthesis of glycophytes and halophytes in the context of their ecological plasticity, variety of their adaptive strategies developed in the course of their evolution, and natural selection, were discussed. Analysis of the known anatomical and morphological adaptations of halophytes (succulence, special salt-excreting structures, features associated with special tissues growth, leaf kranz-anatomy and mesostructure) providing their salt tolerance was conducted. The most important physiological and biochemical adaptations of such plants to salinity related to uptake, accumulation and excretion of Na+ and Cl–, peculiarities of membrane composition and the pigment system, and protection against osmotic and oxidative stresses were described. The association of physiological and biochemical peculiarities of halophytes with ecological salt tolerance strategy was discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Structural, physiological, and biochemical aspects of salinity tolerance of halophytes

Loading next page...
 
/lp/springer_journal/structural-physiological-and-biochemical-aspects-of-salinity-tolerance-xrvvU0gmyd
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717040112
Publisher site
See Article on Publisher Site

Abstract

Modern concepts on structural, physiological, and biochemical aspects of salt tolerance of higher plants were considered. Integral physiological processes, such as growth and photosynthesis of glycophytes and halophytes in the context of their ecological plasticity, variety of their adaptive strategies developed in the course of their evolution, and natural selection, were discussed. Analysis of the known anatomical and morphological adaptations of halophytes (succulence, special salt-excreting structures, features associated with special tissues growth, leaf kranz-anatomy and mesostructure) providing their salt tolerance was conducted. The most important physiological and biochemical adaptations of such plants to salinity related to uptake, accumulation and excretion of Na+ and Cl–, peculiarities of membrane composition and the pigment system, and protection against osmotic and oxidative stresses were described. The association of physiological and biochemical peculiarities of halophytes with ecological salt tolerance strategy was discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off