Structural-phase state and surface properties of composite materials based on polylactide and hydroxyapatite

Structural-phase state and surface properties of composite materials based on polylactide and... The phase composition and unit cell parameters were determined for composites based on polylactide and hydroxyapatite with the polylactide/hydroxyapatite weight ratios of 90/10, 80/20, 70/30, and 60/40. As the polylactide content of the composites is increased, they become less hydrophilic, and the surface energy σS-G increases from 29.13 to 74.35 mJ m–2. The sample with the component weight ratio of 70/30 is characterized by the maximal roughness, and the Ca2+ and Mg2+ ions from simulated body fluid are actively adsorbed onto its surface, as proved by SEM examination of the composites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Structural-phase state and surface properties of composite materials based on polylactide and hydroxyapatite

Loading next page...
 
/lp/springer_journal/structural-phase-state-and-surface-properties-of-composite-materials-Ut042kM1MF
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217010165
Publisher site
See Article on Publisher Site

Abstract

The phase composition and unit cell parameters were determined for composites based on polylactide and hydroxyapatite with the polylactide/hydroxyapatite weight ratios of 90/10, 80/20, 70/30, and 60/40. As the polylactide content of the composites is increased, they become less hydrophilic, and the surface energy σS-G increases from 29.13 to 74.35 mJ m–2. The sample with the component weight ratio of 70/30 is characterized by the maximal roughness, and the Ca2+ and Mg2+ ions from simulated body fluid are actively adsorbed onto its surface, as proved by SEM examination of the composites.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off