Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a Pore-forming Synthetic Peptide

Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a... Restoration of chloride conductance via introduction of an anion-selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis. Delivery of these peptides from an aqueous environment in the absence of organic solvents is paramount. M2GlyR peptides, designed based on the glycine receptor, insert into lipid bilayers and polarized epithelial cells and assemble spontaneously into chloride-conducting pores. Addition of 4 lysine residues to either terminus increases the solubility of M2GlyR peptides. Both orientations of the helix within the membrane form an anion-selective pore, however, differences in solubility, associations and channel-forming activity are observed. To determine how the positioning of the lysine residues affects these properties, structural characteristics of the lysyl-modified peptides were explored utilizing chemical cross-linking, NMR and molecular modeling. Initial model structures of the a-helical peptides predict that lysine residues at the COOH-terminus form a capping structure by folding back to form hydrogen bonds with backbone carbonyl groups and hydroxyl side chains of residues in the helical segment of the peptide. In contrast, lysine residues at the NH2-terminus form fewer H-bonds and extend away from the helical backbone. Results from NMR and chemical cross-linking support the model structures. The C-cap formed by H-bonding of lysine residues is likely to account for the different biophysical properties observed between NH2- and COOH-terminal-modified M2GlyR peptides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a Pore-forming Synthetic Peptide

Loading next page...
 
/lp/springer_journal/structural-implications-of-placing-cationic-residues-at-either-the-nh2-MRQ9FQLBEb
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1027-3
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial