Structural control using a deployable autonomous control system

Structural control using a deployable autonomous control system Structural control devices facilitate the construction of lightweight structures by suppressing excessive vibrations that arise from the reduced self-weight. Most of the current structural control systems are permanent installations designed to control particular structural properties and are hence specific to a particular application. This paper presents a novel concept of a deployable, autonomous control system (DACS) targeting specific applications where short-term vibration mitigation is desired. These applications may include control of existing structures during predictable extreme loading events or temporary structures where the need for vibration mitigation depends on usage characteristics. This control system consists of an electromechanical mass damper (EMD) mounted on an unmanned ground vehicle (UGV) equipped with vision sensors. The mobility of the UGV combined with on-board vision sensors facilitates autonomous positioning of the device at any desired location of the structure. This allows the device to update its position on the structure as required, through a simultaneous localization and mapping (SLAM) solution, to effectively control different structural modes. The performance of the SLAM solution is evaluated using a full-scale pedestrian bridge while the ability of the proposed system to re-position itself to control various modes of vibration is studied through real-time hybrid simulation (RTHS). The experimental results confirm the ability of the proposed system to effectively control large amplitude motion in slender bridges, while being able to position itself at the appropriate locations for multi-modal control. The concept of the overall system presents promising results for applications where temporary control is desired. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Robotics and Applications Springer Journals
Loading next page...
 
/lp/springer_journal/structural-control-using-a-deployable-autonomous-control-system-f8IcGyt4A2
Publisher
Springer Singapore
Copyright
Copyright © 2017 by Springer Nature Singapore Pte Ltd.
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; User Interfaces and Human Computer Interaction; Manufacturing, Machines, Tools; Electronics and Microelectronics, Instrumentation
ISSN
2366-5971
eISSN
2366-598X
D.O.I.
10.1007/s41315-017-0025-7
Publisher site
See Article on Publisher Site

Abstract

Structural control devices facilitate the construction of lightweight structures by suppressing excessive vibrations that arise from the reduced self-weight. Most of the current structural control systems are permanent installations designed to control particular structural properties and are hence specific to a particular application. This paper presents a novel concept of a deployable, autonomous control system (DACS) targeting specific applications where short-term vibration mitigation is desired. These applications may include control of existing structures during predictable extreme loading events or temporary structures where the need for vibration mitigation depends on usage characteristics. This control system consists of an electromechanical mass damper (EMD) mounted on an unmanned ground vehicle (UGV) equipped with vision sensors. The mobility of the UGV combined with on-board vision sensors facilitates autonomous positioning of the device at any desired location of the structure. This allows the device to update its position on the structure as required, through a simultaneous localization and mapping (SLAM) solution, to effectively control different structural modes. The performance of the SLAM solution is evaluated using a full-scale pedestrian bridge while the ability of the proposed system to re-position itself to control various modes of vibration is studied through real-time hybrid simulation (RTHS). The experimental results confirm the ability of the proposed system to effectively control large amplitude motion in slender bridges, while being able to position itself at the appropriate locations for multi-modal control. The concept of the overall system presents promising results for applications where temporary control is desired.

Journal

International Journal of Intelligent Robotics and ApplicationsSpringer Journals

Published: Jul 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off