Structural characteristics of a heated jet in cross-flow emanating from a raised, circular stack

Structural characteristics of a heated jet in cross-flow emanating from a raised, circular stack The structural characteristics of a jet heated to 425 K and emitted from a raised, circular stack into a 300 K cross-flow were studied via cross-plane stereo particle-image velocimetry measurements at multiple streamwise locations downstream of the stack exit. Similar measurements of an unheated jet at equivalent Reynolds number and similar blowing ratio provided a baseline of comparison for the heated case. Instantaneous velocity fields for the heated and unheated jets were marked by intense, small-scale vortices and only a weak indication of a counter-rotating vortex pair (CVP). Upon filtering by proper orthogonal decomposition (POD) to recover only the large-scale flow features, the imprint of the CVP was clearly discerned in the instantaneous fields. The CVP of the heated jet was stronger as well as larger and advected further into the cross-flow compared to that of the unheated jet. While this large-scale reconstruction by POD embodied 35 % of the turbulent kinetic energy, it was found that these large-scale motions captured a vast majority of the Reynolds shear stress, indicating a predominance of the CVP in this regard. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Structural characteristics of a heated jet in cross-flow emanating from a raised, circular stack

Loading next page...
 
/lp/springer_journal/structural-characteristics-of-a-heated-jet-in-cross-flow-emanating-AhKq1cpoY5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1543-1
Publisher site
See Article on Publisher Site

Abstract

The structural characteristics of a jet heated to 425 K and emitted from a raised, circular stack into a 300 K cross-flow were studied via cross-plane stereo particle-image velocimetry measurements at multiple streamwise locations downstream of the stack exit. Similar measurements of an unheated jet at equivalent Reynolds number and similar blowing ratio provided a baseline of comparison for the heated case. Instantaneous velocity fields for the heated and unheated jets were marked by intense, small-scale vortices and only a weak indication of a counter-rotating vortex pair (CVP). Upon filtering by proper orthogonal decomposition (POD) to recover only the large-scale flow features, the imprint of the CVP was clearly discerned in the instantaneous fields. The CVP of the heated jet was stronger as well as larger and advected further into the cross-flow compared to that of the unheated jet. While this large-scale reconstruction by POD embodied 35 % of the turbulent kinetic energy, it was found that these large-scale motions captured a vast majority of the Reynolds shear stress, indicating a predominance of the CVP in this regard.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off