Structural and Functional Changes in the Leaves of Plants from Steppe Communities as Affected by Aridization of the Eurasian Climate

Structural and Functional Changes in the Leaves of Plants from Steppe Communities as Affected by... Morphological and physiological characteristics of leaves from plant species collected in steppe communities in the various climatic zones in Eurasia were compared. The changes in leaf structure correlated with the major climatic factors. The mean thickness of leaves increased with increasing mean temperature of July and decreasing mean precipitation, which corresponded to aridity increase. The increased leaf thickness correlated with an increase in the specific leaf weight. The content of chlorophylls (a + b) in leaves greatly varied with plant habitats, whereas the chlorophyll a/b ratio remained unchanged. The chlorophyll content in leaf tissues had a general tendency to decrease with increasing leaf thickness. The leaf chlorophyll content positively correlated (R 2 = 0.77) with the proportion of chlorenchyma in leaf tissues. It is concluded that steppe plants adapt to climate aridization at the structural level by increasing the proportion of protective heterotrophic components of the leaf without changing the functional activity of photosynthetic tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Structural and Functional Changes in the Leaves of Plants from Steppe Communities as Affected by Aridization of the Eurasian Climate

Loading next page...
 
/lp/springer_journal/structural-and-functional-changes-in-the-leaves-of-plants-from-steppe-S1XsMEnBFL
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1025627805206
Publisher site
See Article on Publisher Site

Abstract

Morphological and physiological characteristics of leaves from plant species collected in steppe communities in the various climatic zones in Eurasia were compared. The changes in leaf structure correlated with the major climatic factors. The mean thickness of leaves increased with increasing mean temperature of July and decreasing mean precipitation, which corresponded to aridity increase. The increased leaf thickness correlated with an increase in the specific leaf weight. The content of chlorophylls (a + b) in leaves greatly varied with plant habitats, whereas the chlorophyll a/b ratio remained unchanged. The chlorophyll content in leaf tissues had a general tendency to decrease with increasing leaf thickness. The leaf chlorophyll content positively correlated (R 2 = 0.77) with the proportion of chlorenchyma in leaf tissues. It is concluded that steppe plants adapt to climate aridization at the structural level by increasing the proportion of protective heterotrophic components of the leaf without changing the functional activity of photosynthetic tissues.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off