Structural and electric properties of AlN substrates used for LED Heterostructures’ growth

Structural and electric properties of AlN substrates used for LED Heterostructures’ growth The structural characteristics and electrical properties of bulk aluminum nitride crystals grown by sublimation and used as substrates for light emitting diode (LED) structures and AlGaN/GaN field effect transistors were studied. The crystalline perfection was assessed by selective chemical etching and by X-ray diffraction techniques. Electrical and optical properties were investigated using the temperature dependence of conductivity, admittance spectroscopy, high-temperature/low-frequency capacitance voltage measurements and by photoinduced transient current spectroscopy (PICTS), microcathodoluminescence (MCL) spectra and MCL imaging techniques. It was established that the studied samples were single crystals with a large grain substructure, with characteristic grain size of several hundred microns and a dislocation density of 102–104 cm−2 inside the grains. The electrical characteristics of the crystals were governed by the compensation of residual donors with a level near E c—0.3 eV by deep centers with activation energy of 0.7 eV, both centers manifesting themselves in the temperature dependence of conductivity and in admittance spectra. In addition, deep centers responsible for the luminescence band with the peak energy of 3.3 eV and associated with low-angle grain boundaries were also observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Structural and electric properties of AlN substrates used for LED Heterostructures’ growth

Loading next page...
 
/lp/springer_journal/structural-and-electric-properties-of-aln-substrates-used-for-led-iYw9CriobM
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739711080178
Publisher site
See Article on Publisher Site

Abstract

The structural characteristics and electrical properties of bulk aluminum nitride crystals grown by sublimation and used as substrates for light emitting diode (LED) structures and AlGaN/GaN field effect transistors were studied. The crystalline perfection was assessed by selective chemical etching and by X-ray diffraction techniques. Electrical and optical properties were investigated using the temperature dependence of conductivity, admittance spectroscopy, high-temperature/low-frequency capacitance voltage measurements and by photoinduced transient current spectroscopy (PICTS), microcathodoluminescence (MCL) spectra and MCL imaging techniques. It was established that the studied samples were single crystals with a large grain substructure, with characteristic grain size of several hundred microns and a dislocation density of 102–104 cm−2 inside the grains. The electrical characteristics of the crystals were governed by the compensation of residual donors with a level near E c—0.3 eV by deep centers with activation energy of 0.7 eV, both centers manifesting themselves in the temperature dependence of conductivity and in admittance spectra. In addition, deep centers responsible for the luminescence band with the peak energy of 3.3 eV and associated with low-angle grain boundaries were also observed.

Journal

Russian MicroelectronicsSpringer Journals

Published: Dec 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off