Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method

Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via... We report the productive synthesis of nanocrystalline zinc substituted mixed ferrite (Ni1−xZnxFe2O4 (0 ≤ x ≤ 1)) particles via low-temperature citrate gel auto-combustion method. The structure and microstructure of the particles, elemental analysis, and complex impedance properties are carried out by PXRD, FESEM, EDS and impedance spectroscopy respectively. The increased lattice parameters with Zn2+ concentrations suggest the substitution of Zn2+ ions to Ni2+. Dielectric constant, dielectric loss and AC conductivity were studied as a function of frequency infer a significant alteration in the dielectric constant, dielectric loss and A.C. conductivity and also showed that zinc substituted ferrites possess low tangent loss (≈ 10−2) at high frequencies. Further, the impedance spectroscopic studies reveal that Zn2+ substituted (x = 0.2, 0.8 and 1) samples attain non-Debye type dielectric relaxation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method

Loading next page...
 
/lp/springer_journal/structural-and-complex-impedance-properties-of-zn2-substituted-nickel-pLX8BivFhP
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-018-9398-0
Publisher site
See Article on Publisher Site

Abstract

We report the productive synthesis of nanocrystalline zinc substituted mixed ferrite (Ni1−xZnxFe2O4 (0 ≤ x ≤ 1)) particles via low-temperature citrate gel auto-combustion method. The structure and microstructure of the particles, elemental analysis, and complex impedance properties are carried out by PXRD, FESEM, EDS and impedance spectroscopy respectively. The increased lattice parameters with Zn2+ concentrations suggest the substitution of Zn2+ ions to Ni2+. Dielectric constant, dielectric loss and AC conductivity were studied as a function of frequency infer a significant alteration in the dielectric constant, dielectric loss and A.C. conductivity and also showed that zinc substituted ferrites possess low tangent loss (≈ 10−2) at high frequencies. Further, the impedance spectroscopic studies reveal that Zn2+ substituted (x = 0.2, 0.8 and 1) samples attain non-Debye type dielectric relaxation.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off