Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth

Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth Two-day-old seedlings of maize (Zea mays L.) were incubated on 3 mM and 35 μM solutions of Sr(NO3)2, and the toxic effects of strontium were assessed by measuring, in the course of four days of incubation, the daily increments of the primary root length and also the root and shoot length by day 7 of incubation, and the length of the fully elongated cells. Sodium rhodizonate, a reagent developing the colored complex with Sr, was used to follow Sr distribution in maize tissues and organs following 2, 24, 48, and 168 h of incubation. Sr was found in all root tissues as soon as after 24 h of incubation; it accumulated mostly in the cell apoplast, whereas its content in the protoplasts was considerably lower. Strontium readily crossed the endodermal barrier via the symplast and was immobilized predominantly in the pericycle cell walls; therefore, it did not hamper root branching. Strontium did not affect the final cell length and hindered root growth (at the concentration of 3 mM) by inhibiting cell division. In the shoots, Sr was found in the xylem cell walls in the vascular bundles of coleoptile, mesocotyl, and leaves on the second day of incubation, an evidence for high Sr mobility. We conclude that the transport of Sr differs from the transport of such heavy metals, as Cd, Pb, and Ni, and is similar in many aspects to the distribution of calcium, another alkaline earth metal, probably due to similar physical and chemical properties of their ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth

Loading next page...
 
/lp/springer_journal/strontium-transport-distribution-and-toxic-effects-on-maize-seedling-flMx4P77FE
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000019217.89936.e7
Publisher site
See Article on Publisher Site

Abstract

Two-day-old seedlings of maize (Zea mays L.) were incubated on 3 mM and 35 μM solutions of Sr(NO3)2, and the toxic effects of strontium were assessed by measuring, in the course of four days of incubation, the daily increments of the primary root length and also the root and shoot length by day 7 of incubation, and the length of the fully elongated cells. Sodium rhodizonate, a reagent developing the colored complex with Sr, was used to follow Sr distribution in maize tissues and organs following 2, 24, 48, and 168 h of incubation. Sr was found in all root tissues as soon as after 24 h of incubation; it accumulated mostly in the cell apoplast, whereas its content in the protoplasts was considerably lower. Strontium readily crossed the endodermal barrier via the symplast and was immobilized predominantly in the pericycle cell walls; therefore, it did not hamper root branching. Strontium did not affect the final cell length and hindered root growth (at the concentration of 3 mM) by inhibiting cell division. In the shoots, Sr was found in the xylem cell walls in the vascular bundles of coleoptile, mesocotyl, and leaves on the second day of incubation, an evidence for high Sr mobility. We conclude that the transport of Sr differs from the transport of such heavy metals, as Cd, Pb, and Ni, and is similar in many aspects to the distribution of calcium, another alkaline earth metal, probably due to similar physical and chemical properties of their ions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off