Stronger uncertainty relations with improvable upper and lower bounds

Stronger uncertainty relations with improvable upper and lower bounds The quantum superposition principle is used to establish improved upper and lower bounds for the Maccone–Pati uncertainty inequality, which is based on a “weighted-like” sum of the variances of observables. Our bounds include free parameters that not only guarantee nontrivial bounds but also effectively control the bounds’ tightness. Significantly, these free parameters depend on neither the state nor the observables. A feature of our method is that any nontrivial bound can always be improved. In addition, we generalize both bounds to uncertainty relations with multiple (three or more) observables, maintaining the uncertainty relations’ tightness. Examples are given to illustrate our improved bounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Stronger uncertainty relations with improvable upper and lower bounds

Loading next page...
 
/lp/springer_journal/stronger-uncertainty-relations-with-improvable-upper-and-lower-bounds-IzILhXuida
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1585-z
Publisher site
See Article on Publisher Site

Abstract

The quantum superposition principle is used to establish improved upper and lower bounds for the Maccone–Pati uncertainty inequality, which is based on a “weighted-like” sum of the variances of observables. Our bounds include free parameters that not only guarantee nontrivial bounds but also effectively control the bounds’ tightness. Significantly, these free parameters depend on neither the state nor the observables. A feature of our method is that any nontrivial bound can always be improved. In addition, we generalize both bounds to uncertainty relations with multiple (three or more) observables, maintaining the uncertainty relations’ tightness. Examples are given to illustrate our improved bounds.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off