Strong light elevates thermotolerance of photosynthetic apparatus and the content of membranes and polar lipids in wheat leaves

Strong light elevates thermotolerance of photosynthetic apparatus and the content of membranes... The influence of excess irradiance on resistance of wheat (Triticum aestivum L.) photosynthetic apparatus to heating in darkness and in the light was investigated and compared with changes in leaf cell ultra-structure and composition of cell lipids and fatty acids. The leaves of 14- to 16-day-old plants grown at low irradiance (about 20 W/m2) were exposed for 1 h to irradiance of 370 or 600 W/m2 PAR. Using infrared gas analysis, we found that the preexposure of leaves to excess irradiation elevated resistance of apparent photosynthesis to 10-min heat treatment at 40–45°C. The rate of Hill reaction (reduction of 2,6-dichlorophenolindophenol by isolated chloroplasts) was higher for leaves heated at high irradiance than for leaves heated in darkness. During illumination of leaves with strong light, mesophyll cells became more abundant in mitochondria and peroxysomes, as well as in cisternae of endoplasmic reticulum and Golgi complex. The chloroplast thylakoids and grana became more extensive and numerous. At the same time, the leaf content of main classes of membrane glycerolipids increased in parallel with the increase in the phospholipid/glycolipid and lipid/chlorophyll ratios. The unsaturation index of fatty acids of membrane lipids increased because of the elevated content of linolenic acid. Thus, excessive light (not fully utilized in photosynthesis) induced in wheat leaves a series of nonspecific adaptive changes that were similar to those occurring under the action of other environmental factors, such as heat shock, cooling, salinity, and osmotic stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Strong light elevates thermotolerance of photosynthetic apparatus and the content of membranes and polar lipids in wheat leaves

Loading next page...
 
/lp/springer_journal/strong-light-elevates-thermotolerance-of-photosynthetic-apparatus-and-f0mUfYVH8N
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713050099
Publisher site
See Article on Publisher Site

Abstract

The influence of excess irradiance on resistance of wheat (Triticum aestivum L.) photosynthetic apparatus to heating in darkness and in the light was investigated and compared with changes in leaf cell ultra-structure and composition of cell lipids and fatty acids. The leaves of 14- to 16-day-old plants grown at low irradiance (about 20 W/m2) were exposed for 1 h to irradiance of 370 or 600 W/m2 PAR. Using infrared gas analysis, we found that the preexposure of leaves to excess irradiation elevated resistance of apparent photosynthesis to 10-min heat treatment at 40–45°C. The rate of Hill reaction (reduction of 2,6-dichlorophenolindophenol by isolated chloroplasts) was higher for leaves heated at high irradiance than for leaves heated in darkness. During illumination of leaves with strong light, mesophyll cells became more abundant in mitochondria and peroxysomes, as well as in cisternae of endoplasmic reticulum and Golgi complex. The chloroplast thylakoids and grana became more extensive and numerous. At the same time, the leaf content of main classes of membrane glycerolipids increased in parallel with the increase in the phospholipid/glycolipid and lipid/chlorophyll ratios. The unsaturation index of fatty acids of membrane lipids increased because of the elevated content of linolenic acid. Thus, excessive light (not fully utilized in photosynthesis) induced in wheat leaves a series of nonspecific adaptive changes that were similar to those occurring under the action of other environmental factors, such as heat shock, cooling, salinity, and osmotic stresses.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off