Strong divergence for system approximations

Strong divergence for system approximations In this paper we analyze approximation of stable linear time-invariant systems, like the Hilbert transform, by sampling series for bandlimited functions in the Paley–Wiener space PW π 1 . It is known that there exist systems and functions such that the approximation process is weakly divergent, i.e., divergent for certain subsequences. Here we strengthen this result by proving strong divergence, i.e., divergence for all subsequences. Further, in case of divergence, we give the divergence speed. We consider sampling at Nyquist rate as well as oversampling with adaptive choice of the kernel. Finally, connections between strong divergence and the Banach–Steinhaus theorem, which is not powerful enough to prove strong divergence, are discussed. Problems of Information Transmission Springer Journals

Strong divergence for system approximations

Loading next page...
Pleiades Publishing
Copyright © 2015 by Pleiades Publishing, Inc.
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial