Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP

Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP The smoothing algorithms have been successfully applied to solve the symmetric cone complementarity problem (denoted by SCCP), which in general have the global and local superlinear/quadratic convergence if the solution set of the SCCP is nonempty and bounded. Huang, Hu and Han [Science in China Series A: Mathematics, 52: 833–848, 2009] presented a nonmonotone smoothing algorithm for solving the SCCP, whose global convergence is established by just requiring that the solution set of the SCCP is nonempty. In this paper, we propose a new nonmonotone smoothing algorithm for solving the SCCP by modifying the version of Huang-Hu-Han’s algorithm. We prove that the modified nonmonotone smoothing algorithm not only is globally convergent but also has local superlinear/quadratical convergence if the solution set of the SCCP is nonempty. This convergence result is stronger than those obtained by most smoothing-type algorithms. Finally, some numerical results are reported. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimization Letters Springer Journals

Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP

Loading next page...
 
/lp/springer_journal/strong-convergence-properties-of-a-modified-nonmonotone-smoothing-IqfcxiLXi2
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Optimization; Operations Research/Decision Theory; Computational Intelligence; Numerical and Computational Physics, Simulation
ISSN
1862-4472
eISSN
1862-4480
D.O.I.
10.1007/s11590-017-1134-9
Publisher site
See Article on Publisher Site

Abstract

The smoothing algorithms have been successfully applied to solve the symmetric cone complementarity problem (denoted by SCCP), which in general have the global and local superlinear/quadratic convergence if the solution set of the SCCP is nonempty and bounded. Huang, Hu and Han [Science in China Series A: Mathematics, 52: 833–848, 2009] presented a nonmonotone smoothing algorithm for solving the SCCP, whose global convergence is established by just requiring that the solution set of the SCCP is nonempty. In this paper, we propose a new nonmonotone smoothing algorithm for solving the SCCP by modifying the version of Huang-Hu-Han’s algorithm. We prove that the modified nonmonotone smoothing algorithm not only is globally convergent but also has local superlinear/quadratical convergence if the solution set of the SCCP is nonempty. This convergence result is stronger than those obtained by most smoothing-type algorithms. Finally, some numerical results are reported.

Journal

Optimization LettersSpringer Journals

Published: Mar 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off