Stressing the role of MAP kinases in mitogenic stimulation

Stressing the role of MAP kinases in mitogenic stimulation In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Stressing the role of MAP kinases in mitogenic stimulation

Loading next page...
 
/lp/springer_journal/stressing-the-role-of-map-kinases-in-mitogenic-stimulation-G8VmJrZBoe
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006301614690
Publisher site
See Article on Publisher Site

Abstract

In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off