Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts

Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts Expression of the chloroplast electron shuttle ferredoxin is induced by light through mechanisms that partially depend on sequences lying in the coding region of the gene, complicating its manipulation by promoter engineering. Ferredoxin expression is also down-regulated under virtually all stress situations, and it is unclear if light-dependent induction and stress-dependent repression proceed through the same or similar mechanisms. Previous reports have shown that expression of a cyanobacterial flavodoxin in tobacco plastids results in plants with enhanced tolerance to adverse environmental conditions such as drought, chilling and xenobiotics (Tognetti et al. in Plant Cell 18:2035–2050, 2006). The protective effect of flavodoxin was linked to functional replacement of ferredoxin, suggesting the possibility that tolerant phenotypes might be obtained by simply increasing ferredoxin contents. To bypass endogenous regulatory constraints, we transformed tobacco plants with a ferredoxin gene from Anabaena sp. PCC7120, which has only 53% identity with plant orthologs. The cyanobacterial protein was able to interact in vitro with ferredoxin-dependent plant enzymes and to mediate NADP+ photoreduction by tobacco thylakoids. Expression of Anabaena ferredoxin was constitutive and light-independent. However, homozygous lines accumulating threefold higher ferredoxin levels than the wild-type failed to show enhanced tolerance to oxidative stress and chilling temperatures. Under these adverse conditions, Anabaena ferredoxin was down-regulated even faster than the endogenous counterparts. The results indicate that: (1) light- and stress-dependent regulations of ferredoxin expression proceed through different pathways, and (2) overexpression of ferredoxin is not an alternative to flavodoxin expression for the development of increased stress tolerance in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts

Loading next page...
 
/lp/springer_journal/stress-response-of-transgenic-tobacco-plants-expressing-a-oP0wvkkChB
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9786-9
Publisher site
See Article on Publisher Site

Abstract

Expression of the chloroplast electron shuttle ferredoxin is induced by light through mechanisms that partially depend on sequences lying in the coding region of the gene, complicating its manipulation by promoter engineering. Ferredoxin expression is also down-regulated under virtually all stress situations, and it is unclear if light-dependent induction and stress-dependent repression proceed through the same or similar mechanisms. Previous reports have shown that expression of a cyanobacterial flavodoxin in tobacco plastids results in plants with enhanced tolerance to adverse environmental conditions such as drought, chilling and xenobiotics (Tognetti et al. in Plant Cell 18:2035–2050, 2006). The protective effect of flavodoxin was linked to functional replacement of ferredoxin, suggesting the possibility that tolerant phenotypes might be obtained by simply increasing ferredoxin contents. To bypass endogenous regulatory constraints, we transformed tobacco plants with a ferredoxin gene from Anabaena sp. PCC7120, which has only 53% identity with plant orthologs. The cyanobacterial protein was able to interact in vitro with ferredoxin-dependent plant enzymes and to mediate NADP+ photoreduction by tobacco thylakoids. Expression of Anabaena ferredoxin was constitutive and light-independent. However, homozygous lines accumulating threefold higher ferredoxin levels than the wild-type failed to show enhanced tolerance to oxidative stress and chilling temperatures. Under these adverse conditions, Anabaena ferredoxin was down-regulated even faster than the endogenous counterparts. The results indicate that: (1) light- and stress-dependent regulations of ferredoxin expression proceed through different pathways, and (2) overexpression of ferredoxin is not an alternative to flavodoxin expression for the development of increased stress tolerance in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: May 17, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off