Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. Isolated from a White Sea hydroid

Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp.... Effects of light intensity, nitrogen availability, and inoculum density on growth and the content of esterified fatty acids (FA), chlorophylls, and carotenoids in Desmodesmus sp. 3Dp86E-1 chlorophyte alga isolated from the White Sea hydroid Dynamena pumila L. were investigated. The growth of algae in the complete BG-11 medium was not limited by irradiances up to 480 μE/(m2 s) PAR but depended on the inoculum density. Under nitrogen starvation conditions, high-intensity light retarded growth of the microalga; this effect was less pronounced in the cultures initiated at high inoculum densities. The highest FA percentage in biomass (30% at the 3rd day of cultivation) was detected in nitrogen-starving cultures grown under high light conditions; however, the highest volumetric FA content (0.25 g/L) was attained on a complete medium at 480 μE/(m2 s). An increase in the content of oleic acid (18:1) on the background of a decrease in linolenic acid (18:3) was characteristic of the microalga under stress conditions. The microalga was found to be non-carotenogenic. Nitrogen starvation brought about a dramatic decrease in chlorophyll content on the background of relatively constant carotenoid content. On nitrogen-deplete medium, the high light did not trigger the adaptive response of the pigment apparatus. The changes in absorption spectra of Desmodesmus sp. 3Dp86E-1 cell suspensions reflected the increase in relative contribution of carotenoids to light absorption by the microalgal cells; these changes were tightly related with FA accumulation. The mechanisms of acclimation of Desmodesmus sp. 3Dp86E-1 to high light and nitrogen starvation are discussed in view of possible biotechnological applications of this alga. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. Isolated from a White Sea hydroid

Loading next page...
 
/lp/springer_journal/stress-induced-changes-in-pigment-and-fatty-acid-content-in-the-LxUGUzRJgv
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713030138
Publisher site
See Article on Publisher Site

Abstract

Effects of light intensity, nitrogen availability, and inoculum density on growth and the content of esterified fatty acids (FA), chlorophylls, and carotenoids in Desmodesmus sp. 3Dp86E-1 chlorophyte alga isolated from the White Sea hydroid Dynamena pumila L. were investigated. The growth of algae in the complete BG-11 medium was not limited by irradiances up to 480 μE/(m2 s) PAR but depended on the inoculum density. Under nitrogen starvation conditions, high-intensity light retarded growth of the microalga; this effect was less pronounced in the cultures initiated at high inoculum densities. The highest FA percentage in biomass (30% at the 3rd day of cultivation) was detected in nitrogen-starving cultures grown under high light conditions; however, the highest volumetric FA content (0.25 g/L) was attained on a complete medium at 480 μE/(m2 s). An increase in the content of oleic acid (18:1) on the background of a decrease in linolenic acid (18:3) was characteristic of the microalga under stress conditions. The microalga was found to be non-carotenogenic. Nitrogen starvation brought about a dramatic decrease in chlorophyll content on the background of relatively constant carotenoid content. On nitrogen-deplete medium, the high light did not trigger the adaptive response of the pigment apparatus. The changes in absorption spectra of Desmodesmus sp. 3Dp86E-1 cell suspensions reflected the increase in relative contribution of carotenoids to light absorption by the microalgal cells; these changes were tightly related with FA accumulation. The mechanisms of acclimation of Desmodesmus sp. 3Dp86E-1 to high light and nitrogen starvation are discussed in view of possible biotechnological applications of this alga.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off