Stress distribution affected by nanostructures near a surface crack on a silicon chip

Stress distribution affected by nanostructures near a surface crack on a silicon chip During the thinning and machining processes, surface defects or cracks are easily induced on a silicon chip. The defects or cracks may cause stress concentration and become one of the failure sources for silicon chips. One of our previous papers reported that the stress concentration at the crack tip on a silicon chip with nanostructure was greatly reduced for the case of four-point bending. In this paper, the finite element analysis was used to further study the effect of nanostructures on the stress distribution near the surface crack for a silicon chip. Since the stress distribution near the surface crack was our main concern for a chip under four-point bending, nanostructures were introduced in the area near the crack on the chip surface in the analysis for computational efficiency. The spacing and depth of the nanostructure, and the crack depth on the silicon chip surface were varied to access their effects on the stress distributions near the crack on the silicon chip. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Stress distribution affected by nanostructures near a surface crack on a silicon chip

Loading next page...
 
/lp/springer_journal/stress-distribution-affected-by-nanostructures-near-a-surface-crack-on-KeArm3xvIH
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/s00707-015-1516-y
Publisher site
See Article on Publisher Site

Abstract

During the thinning and machining processes, surface defects or cracks are easily induced on a silicon chip. The defects or cracks may cause stress concentration and become one of the failure sources for silicon chips. One of our previous papers reported that the stress concentration at the crack tip on a silicon chip with nanostructure was greatly reduced for the case of four-point bending. In this paper, the finite element analysis was used to further study the effect of nanostructures on the stress distribution near the surface crack for a silicon chip. Since the stress distribution near the surface crack was our main concern for a chip under four-point bending, nanostructures were introduced in the area near the crack on the chip surface in the analysis for computational efficiency. The spacing and depth of the nanostructure, and the crack depth on the silicon chip surface were varied to access their effects on the stress distributions near the crack on the silicon chip.

Journal

Acta MechanicaSpringer Journals

Published: Dec 24, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off