Stress concentration around a rectangular cuboid hole in a three-dimensional elastic body under tension loading

Stress concentration around a rectangular cuboid hole in a three-dimensional elastic body under... Stress concentration caused by holes can be investigated by numerical and analytical methods. Current analytical methods can only solve two-dimensional problems. This paper proposes an analytical study on a three-dimensional stress concentration problem that involves a rectangular cuboid hole in a three-dimensional elastic body under tension loading. Based on the finite element method and U-transformation method, the problem can be expressed as a set of uncoupled equations with cyclic periodicity. Displacements of the three-dimensional elastic body are derived in analytical form to study stress distribution in it. Numerical simulation is conducted using ABAQUS to verify the analytical solution. Stress concentration factors in cases of uniaxial, biaxial, and triaxial tensions and the effect of the side ratio of the hole on them are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive of Applied Mechanics Springer Journals

Stress concentration around a rectangular cuboid hole in a three-dimensional elastic body under tension loading

Loading next page...
 
/lp/springer_journal/stress-concentration-around-a-rectangular-cuboid-hole-in-a-three-hSc4QwdcE7
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Classical Mechanics
ISSN
0939-1533
eISSN
1432-0681
D.O.I.
10.1007/s00419-018-1369-7
Publisher site
See Article on Publisher Site

Abstract

Stress concentration caused by holes can be investigated by numerical and analytical methods. Current analytical methods can only solve two-dimensional problems. This paper proposes an analytical study on a three-dimensional stress concentration problem that involves a rectangular cuboid hole in a three-dimensional elastic body under tension loading. Based on the finite element method and U-transformation method, the problem can be expressed as a set of uncoupled equations with cyclic periodicity. Displacements of the three-dimensional elastic body are derived in analytical form to study stress distribution in it. Numerical simulation is conducted using ABAQUS to verify the analytical solution. Stress concentration factors in cases of uniaxial, biaxial, and triaxial tensions and the effect of the side ratio of the hole on them are discussed.

Journal

Archive of Applied MechanicsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off