Stress analysis in three-dimensional joints with a crack at the vertex of the interface

Stress analysis in three-dimensional joints with a crack at the vertex of the interface A crack initiates frequently at a vertex in three-dimensional joints under an external load and a thermal load. In the present paper, the stress distributions near a very small crack occurring at the vertex of the interface in a three-dimensional joint are analyzed under a tensile load using a boundary element method, and the stress intensity factor of mode II is investigated along the crack front. The joint model is composed of silicon and resin, which is modeled on a material combination in electronic devices. Three kinds of crack shape, triangular, quarter circular, and concave shapes, are supposed as a crack shape. First, the stress distributions near the vertex in the model without a crack are obtained and are used for normalizing the singular stress at the front of the crack. Dimensionless stress intensity factor for an interface crack is defined and determined from the distribution of the normalized stress. Next, the stress distribution near the intersection point of the crack front and the side surface is precisely investigated. An eigenanalysis at the intersection point is conducted, and eigenvalues yielding the stress singularity are obtained. Then, it is found that there are two values yielding the stress singularity. The stress distributions near the intersection point are expressed using the angular functions for each value yielding the singularity. Finally, it is shown that the stress intensity factor for mode II along the crack front varies following the summation of functions composed of the distance from the intersection point with the power indices of ( $${0.5 - {\lambda _1}}$$ 0.5 - λ 1 ) and ( $${0.5 - {\lambda _2}}$$ 0.5 - λ 2 ), where $${\lambda _1}$$ λ 1 and $${\lambda _2}$$ λ 2 are the orders of stress singularity at the intersection point. Acta Mechanica Springer Journals

Stress analysis in three-dimensional joints with a crack at the vertex of the interface

Loading next page...
Springer Vienna
Copyright © 2015 by Springer-Verlag Wien
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial