Streaming and mixing induced by a bundle of ciliary vibrating micro-pillars

Streaming and mixing induced by a bundle of ciliary vibrating micro-pillars Directional near-wall flow induced by the vibration of slender micro-pillars attached to a surface similar to ciliary structures or grafted filaments is studied experimentally. The micro-pillar arrays are arranged in the form of a “V” approximating an asymmetric fore-aft bundle shape often found in nature, too. A base-layer actuation is used to excite the micro-pillars to oscillate in a vibratory pattern with maximum amplitude at the tips. Due to the specific shape of the bundle structure and asymmetric boundary conditions of the oscillatory motion, the pillars perform a tilted beating motion—similar to cilia—with a forward power stroke and a backward oriented recovery stroke or vice versa, depending on the boundary conditions of the actuation. As a consequence of the cooperative beating motion and the fore-aft asymmetry of the shape of the bundle, a directional streaming motion is induced by the pillars which increase with increasing streaming Reynolds number Re S . In addition to the net streaming effect, the flow in the space between the pillar bases exhibit a micro-scale swirling motion around each of the structures with an efficient mixing behavior. Applied to micro-channels or wall-bounded flows, such structures may act as locally distributed passive or active flow manipulation devices. The use of such cilia bundles in large numbers on surfaces as passive structures for near-wall control in of boundary layer flows is feasible, too. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Streaming and mixing induced by a bundle of ciliary vibrating micro-pillars

Loading next page...
 
/lp/springer_journal/streaming-and-mixing-induced-by-a-bundle-of-ciliary-vibrating-micro-Vo00s1pkda
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0774-7
Publisher site
See Article on Publisher Site

Abstract

Directional near-wall flow induced by the vibration of slender micro-pillars attached to a surface similar to ciliary structures or grafted filaments is studied experimentally. The micro-pillar arrays are arranged in the form of a “V” approximating an asymmetric fore-aft bundle shape often found in nature, too. A base-layer actuation is used to excite the micro-pillars to oscillate in a vibratory pattern with maximum amplitude at the tips. Due to the specific shape of the bundle structure and asymmetric boundary conditions of the oscillatory motion, the pillars perform a tilted beating motion—similar to cilia—with a forward power stroke and a backward oriented recovery stroke or vice versa, depending on the boundary conditions of the actuation. As a consequence of the cooperative beating motion and the fore-aft asymmetry of the shape of the bundle, a directional streaming motion is induced by the pillars which increase with increasing streaming Reynolds number Re S . In addition to the net streaming effect, the flow in the space between the pillar bases exhibit a micro-scale swirling motion around each of the structures with an efficient mixing behavior. Applied to micro-channels or wall-bounded flows, such structures may act as locally distributed passive or active flow manipulation devices. The use of such cilia bundles in large numbers on surfaces as passive structures for near-wall control in of boundary layer flows is feasible, too.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 5, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off