Strategies for optimal logical topology design and traffic grooming

Strategies for optimal logical topology design and traffic grooming Traffic grooming techniques are used to combine low-speed data streams onto high-speed lightpaths with the objective of minimizing the network cost, or maximizing the network throughput. In this article, we present a complete suite of efficient Integer Linear Program (ILP) formulations for logical topology design and traffic grooming on mesh WDM networks. Our formulations can be easily modified to implement different objective functions and, contrary to previous formulations, our ILP formulation can be used to generate optimal solutions for practical sized networks with hundreds of requests. Our first set of formulations addresses the complete logical topology design traffic grooming problem, including RWA and traffic routing. The second set uses the simplifying assumption that RWA is not an issue. The last two sets address optimal traffic grooming alone, where the logical topology is already specified. We have studied these formulations, using simulation with networks having up to 30 nodes, and with hundreds and, in some cases, over a thousand low-speed data streams and have shown that the formulations are able to generate optimal solutions within a reasonable amount of time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Strategies for optimal logical topology design and traffic grooming

Loading next page...
 
/lp/springer_journal/strategies-for-optimal-logical-topology-design-and-traffic-grooming-SlJLP3RJCh
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0227-5
Publisher site
See Article on Publisher Site

Abstract

Traffic grooming techniques are used to combine low-speed data streams onto high-speed lightpaths with the objective of minimizing the network cost, or maximizing the network throughput. In this article, we present a complete suite of efficient Integer Linear Program (ILP) formulations for logical topology design and traffic grooming on mesh WDM networks. Our formulations can be easily modified to implement different objective functions and, contrary to previous formulations, our ILP formulation can be used to generate optimal solutions for practical sized networks with hundreds of requests. Our first set of formulations addresses the complete logical topology design traffic grooming problem, including RWA and traffic routing. The second set uses the simplifying assumption that RWA is not an issue. The last two sets address optimal traffic grooming alone, where the logical topology is already specified. We have studied these formulations, using simulation with networks having up to 30 nodes, and with hundreds and, in some cases, over a thousand low-speed data streams and have shown that the formulations are able to generate optimal solutions within a reasonable amount of time.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Nov 28, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off