Strategies for optical transport network recovery under epidemic network failures

Strategies for optical transport network recovery under epidemic network failures The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust manner under different failure scenarios. This work evaluates two rerouting strategies and proposes four policies for failure handling in a connection-oriented optical transport network, under generalized multiprotocol label switching control plane. The performance of the strategies and the policies are evaluated under multiple correlated large-scale failures. We employ the Susceptible–Infected–Disabled epidemic failure spreading model and look into possible trade-offs between resiliency and resource efficiency. Via extensive simulations, we show that source rerouting outperforms on-site rerouting, and that there exist a clear trade-off between policy performance and network resource consumption, which must be addressed by network operators for improved robustness of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50 % less connections requiring recovery, which translates in improved quality of service to customers and lower recovery expenses for the network operator. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Strategies for optical transport network recovery under epidemic network failures

Loading next page...
 
/lp/springer_journal/strategies-for-optical-transport-network-recovery-under-epidemic-4o5JnP0vle
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0502-6
Publisher site
See Article on Publisher Site

Abstract

The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust manner under different failure scenarios. This work evaluates two rerouting strategies and proposes four policies for failure handling in a connection-oriented optical transport network, under generalized multiprotocol label switching control plane. The performance of the strategies and the policies are evaluated under multiple correlated large-scale failures. We employ the Susceptible–Infected–Disabled epidemic failure spreading model and look into possible trade-offs between resiliency and resource efficiency. Via extensive simulations, we show that source rerouting outperforms on-site rerouting, and that there exist a clear trade-off between policy performance and network resource consumption, which must be addressed by network operators for improved robustness of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50 % less connections requiring recovery, which translates in improved quality of service to customers and lower recovery expenses for the network operator.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 18, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off