Strategies for coordinated multirobot exploration with recurrent connectivity constraints

Strategies for coordinated multirobot exploration with recurrent connectivity constraints During several applications, such as search and rescue, robots must discover new information about the environment and, at the same time, share operational knowledge with a base station through an ad hoc network. In this paper, we design exploration strategies that allow robots to coordinate with teammates to form such a network in order to satisfy recurrent connectivity constraints—that is, data must be shared with the base station when making new observations at the assigned locations. Current approaches lack in flexibility due to the assumptions made about the communication model. Furthermore, they are sometimes inefficient because of the synchronous way they work: new plans are issued only once all robots have reached their goals. This paper introduces two novel asynchronous strategies that work with arbitrary communication models. In this paper, ‘asynchronous’ means that it is possible to issue new plans to subgroups of robots, when they are ready to receive them. First, we propose a single-stage strategy based on Integer Linear Programming for selecting and assigning robots to locations. Second, we design a two-stage strategy to improve computational efficiency, by separating the problem of locations’ selection from that of robot-location assignments. Extensive testing both in simulation and with real robots show that the proposed strategies provide good situation awareness at the base station while efficiently exploring the environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Strategies for coordinated multirobot exploration with recurrent connectivity constraints

Loading next page...
 
/lp/springer_journal/strategies-for-coordinated-multirobot-exploration-with-recurrent-xYY00uf4dl
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9652-y
Publisher site
See Article on Publisher Site

Abstract

During several applications, such as search and rescue, robots must discover new information about the environment and, at the same time, share operational knowledge with a base station through an ad hoc network. In this paper, we design exploration strategies that allow robots to coordinate with teammates to form such a network in order to satisfy recurrent connectivity constraints—that is, data must be shared with the base station when making new observations at the assigned locations. Current approaches lack in flexibility due to the assumptions made about the communication model. Furthermore, they are sometimes inefficient because of the synchronous way they work: new plans are issued only once all robots have reached their goals. This paper introduces two novel asynchronous strategies that work with arbitrary communication models. In this paper, ‘asynchronous’ means that it is possible to issue new plans to subgroups of robots, when they are ready to receive them. First, we propose a single-stage strategy based on Integer Linear Programming for selecting and assigning robots to locations. Second, we design a two-stage strategy to improve computational efficiency, by separating the problem of locations’ selection from that of robot-location assignments. Extensive testing both in simulation and with real robots show that the proposed strategies provide good situation awareness at the base station while efficiently exploring the environment.

Journal

Autonomous RobotsSpringer Journals

Published: Jul 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial