Strategies for coordinated multirobot exploration with recurrent connectivity constraints

Strategies for coordinated multirobot exploration with recurrent connectivity constraints During several applications, such as search and rescue, robots must discover new information about the environment and, at the same time, share operational knowledge with a base station through an ad hoc network. In this paper, we design exploration strategies that allow robots to coordinate with teammates to form such a network in order to satisfy recurrent connectivity constraints—that is, data must be shared with the base station when making new observations at the assigned locations. Current approaches lack in flexibility due to the assumptions made about the communication model. Furthermore, they are sometimes inefficient because of the synchronous way they work: new plans are issued only once all robots have reached their goals. This paper introduces two novel asynchronous strategies that work with arbitrary communication models. In this paper, ‘asynchronous’ means that it is possible to issue new plans to subgroups of robots, when they are ready to receive them. First, we propose a single-stage strategy based on Integer Linear Programming for selecting and assigning robots to locations. Second, we design a two-stage strategy to improve computational efficiency, by separating the problem of locations’ selection from that of robot-location assignments. Extensive testing both in simulation and with real robots show that the proposed strategies provide good situation awareness at the base station while efficiently exploring the environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Strategies for coordinated multirobot exploration with recurrent connectivity constraints

Loading next page...
 
/lp/springer_journal/strategies-for-coordinated-multirobot-exploration-with-recurrent-xYY00uf4dl
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9652-y
Publisher site
See Article on Publisher Site

Abstract

During several applications, such as search and rescue, robots must discover new information about the environment and, at the same time, share operational knowledge with a base station through an ad hoc network. In this paper, we design exploration strategies that allow robots to coordinate with teammates to form such a network in order to satisfy recurrent connectivity constraints—that is, data must be shared with the base station when making new observations at the assigned locations. Current approaches lack in flexibility due to the assumptions made about the communication model. Furthermore, they are sometimes inefficient because of the synchronous way they work: new plans are issued only once all robots have reached their goals. This paper introduces two novel asynchronous strategies that work with arbitrary communication models. In this paper, ‘asynchronous’ means that it is possible to issue new plans to subgroups of robots, when they are ready to receive them. First, we propose a single-stage strategy based on Integer Linear Programming for selecting and assigning robots to locations. Second, we design a two-stage strategy to improve computational efficiency, by separating the problem of locations’ selection from that of robot-location assignments. Extensive testing both in simulation and with real robots show that the proposed strategies provide good situation awareness at the base station while efficiently exploring the environment.

Journal

Autonomous RobotsSpringer Journals

Published: Jul 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off