Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on Intergranular Corrosion in Extra-Low Carbon Type 304L Austenitic Stainless Steel

Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on... Strain-annealing based thermo-mechanical processing has been performed to promote grain boundary engineering (GBE) in an extra-low carbon type austenitic stainless steel without altering the grain size and residual strain to evaluate its sole influence on intergranular corrosion. Single-step processing comprising low pre-strain (~ 5 and 10 pct) followed by annealing at 1273 K for 1 hour have resulted in a large fraction of Σ3 n boundaries and significant disruption in random high-angle grain boundaries (RHAGBs) connectivity. This is due to the occurrence of prolific multiple twinning in these specimens as confirmed by their large twin-related domain and twin-related grain size ratio. Among the iterative processing, the schedule comprising two cycles of 10 and 5 pct deformation followed by annealing at 1173 K for 1 hour has yielded the optimum GBE microstructure with the grain size and residual strain akin to the as-received condition. The specimens subjected to the higher number of iterations failed to realize GBE microstructures due to the occurrence of partial recrystallization. Owing to the optimum grain boundary character distribution, the GBE specimen has exhibited remarkable resistance against sensitization and intergranular corrosion as compared to the as-received condition. Furthermore, the lower depth of percolation in the GBE specimen is due to the significant disruption of RHAGBs connectivity as confirmed from its large twin-related domain and lower fractal dimension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallurgical and Materials Transactions A Springer Journals

Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on Intergranular Corrosion in Extra-Low Carbon Type 304L Austenitic Stainless Steel

Loading next page...
 
/lp/springer_journal/strain-annealing-based-grain-boundary-engineering-to-evaluate-its-sole-5o30JmKeiw
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
1073-5623
eISSN
1543-1940
D.O.I.
10.1007/s11661-018-4608-1
Publisher site
See Article on Publisher Site

Abstract

Strain-annealing based thermo-mechanical processing has been performed to promote grain boundary engineering (GBE) in an extra-low carbon type austenitic stainless steel without altering the grain size and residual strain to evaluate its sole influence on intergranular corrosion. Single-step processing comprising low pre-strain (~ 5 and 10 pct) followed by annealing at 1273 K for 1 hour have resulted in a large fraction of Σ3 n boundaries and significant disruption in random high-angle grain boundaries (RHAGBs) connectivity. This is due to the occurrence of prolific multiple twinning in these specimens as confirmed by their large twin-related domain and twin-related grain size ratio. Among the iterative processing, the schedule comprising two cycles of 10 and 5 pct deformation followed by annealing at 1173 K for 1 hour has yielded the optimum GBE microstructure with the grain size and residual strain akin to the as-received condition. The specimens subjected to the higher number of iterations failed to realize GBE microstructures due to the occurrence of partial recrystallization. Owing to the optimum grain boundary character distribution, the GBE specimen has exhibited remarkable resistance against sensitization and intergranular corrosion as compared to the as-received condition. Furthermore, the lower depth of percolation in the GBE specimen is due to the significant disruption of RHAGBs connectivity as confirmed from its large twin-related domain and lower fractal dimension.

Journal

Metallurgical and Materials Transactions ASpringer Journals

Published: May 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off