Access the full text.
Sign up today, get DeepDyve free for 14 days.
The <110>ND<uvw>(<110>//normal direction)(<110>ND) grains in micro-shear bands in high-purity tantalum were investigated using electron backscatter diffraction and X-ray line profile analysis. The generation of the <110>ND grains and their subdivision and rotation behaviors upon the subsequent deformation were characterized by multi-scale analysis methods based on information about the slip systems, misorientation angle/axes and stored energy. The obtained results show that in the transverse plane, <110>ND grains are oriented at angles of 15°–25° to the adjacent deformed matrices in the 60% rolled specimen, and at angles of 25°–35° in the 87% rolled specimen. The <110>ND grain provided strain accommodation during the shear deformation. Moreover, the energy of the <110>ND grains in the 87% rolled specimen is approximately three times larger than that in the 60% rolled specimen, indicating that the role of strain accommodation is enhanced with the increase in the micro-shear stress concentration in a local region in tantalum.
Journal of Materials Science – Springer Journals
Published: May 29, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.