Storing and querying XML data using denormalized relational databases

Storing and querying XML data using denormalized relational databases XML database systems emerge as a result of the acceptance of the XML data model. Recent works have followed the promising approach of building XML database management systems on underlying RDBMS’s. Achieving query processing performance reduces to two questions: (i) How should the XML data be decomposed into data that are stored in the RDBMS? (ii) How should the XML query be translated into an efficient plan that sends one or more SQL queries to the underlying RDBMS and combines the data into the XML result? We provide a formal framework for XML Schema-driven decompositions, which encompasses the decompositions proposed in prior work and extends them with decompositions that employ denormalized tables and binary-coded XML fragments. We provide corresponding query processing algorithms that translate the XML query conditions into conditions on the relational tables and assemble the decomposed data into the XML query result. Our key performance focus is the response time for delivering the first results of a query. The most effective of the described decompositions have been implemented in XCacheDB, an XML DBMS built on top of a commercial RDBMS, which serves as our experimental basis. We present experiments and analysis that point to a class of decompositions, called inlined decompositions, that improve query performance for full results and first results, without significant increase in the size of the database. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Storing and querying XML data using denormalized relational databases

Loading next page...
 
/lp/springer_journal/storing-and-querying-xml-data-using-denormalized-relational-databases-Ctb6ptEoLi
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0113-1
Publisher site
See Article on Publisher Site

Abstract

XML database systems emerge as a result of the acceptance of the XML data model. Recent works have followed the promising approach of building XML database management systems on underlying RDBMS’s. Achieving query processing performance reduces to two questions: (i) How should the XML data be decomposed into data that are stored in the RDBMS? (ii) How should the XML query be translated into an efficient plan that sends one or more SQL queries to the underlying RDBMS and combines the data into the XML result? We provide a formal framework for XML Schema-driven decompositions, which encompasses the decompositions proposed in prior work and extends them with decompositions that employ denormalized tables and binary-coded XML fragments. We provide corresponding query processing algorithms that translate the XML query conditions into conditions on the relational tables and assemble the decomposed data into the XML query result. Our key performance focus is the response time for delivering the first results of a query. The most effective of the described decompositions have been implemented in XCacheDB, an XML DBMS built on top of a commercial RDBMS, which serves as our experimental basis. We present experiments and analysis that point to a class of decompositions, called inlined decompositions, that improve query performance for full results and first results, without significant increase in the size of the database.

Journal

The VLDB JournalSpringer Journals

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off