Stock prediction using deep learning

Stock prediction using deep learning Stock market is considered chaotic, complex, volatile and dynamic. Undoubtedly, its prediction is one of the most challenging tasks in time series forecasting. Moreover existing Artificial Neural Network (ANN) approaches fail to provide encouraging results. Meanwhile advances in machine learning have presented favourable results for speech recognition, image classification and language processing. Methods applied in digital signal processing can be applied to stock data as both are time series. Similarly, learning outcome of this paper can be applied to speech time series data. Deep learning for stock prediction has been introduced in this paper and its performance is evaluated on Google stock price multimedia data (chart) from NASDAQ. The objective of this paper is to demonstrate that deep learning can improve stock market forecasting accuracy. For this, (2D)2PCA + Deep Neural Network (DNN) method is compared with state of the art method 2-Directional 2-Dimensional Principal Component Analysis (2D)2PCA + Radial Basis Function Neural Network (RBFNN). It is found that the proposed method is performing better than the existing method RBFNN with an improved accuracy of 4.8% for Hit Rate with a window size of 20. Also the results of the proposed model are compared with the Recurrent Neural Network (RNN) and it is found that the accuracy for Hit Rate is improved by 15.6%. The correlation coefficient between the actual and predicted return for DNN is 17.1% more than RBFNN and it is 43.4% better than RNN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Stock prediction using deep learning

Loading next page...
 
/lp/springer_journal/stock-prediction-using-deep-learning-pju2t7OCc7
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4159-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial