Stock prediction using deep learning

Stock prediction using deep learning Stock market is considered chaotic, complex, volatile and dynamic. Undoubtedly, its prediction is one of the most challenging tasks in time series forecasting. Moreover existing Artificial Neural Network (ANN) approaches fail to provide encouraging results. Meanwhile advances in machine learning have presented favourable results for speech recognition, image classification and language processing. Methods applied in digital signal processing can be applied to stock data as both are time series. Similarly, learning outcome of this paper can be applied to speech time series data. Deep learning for stock prediction has been introduced in this paper and its performance is evaluated on Google stock price multimedia data (chart) from NASDAQ. The objective of this paper is to demonstrate that deep learning can improve stock market forecasting accuracy. For this, (2D)2PCA + Deep Neural Network (DNN) method is compared with state of the art method 2-Directional 2-Dimensional Principal Component Analysis (2D)2PCA + Radial Basis Function Neural Network (RBFNN). It is found that the proposed method is performing better than the existing method RBFNN with an improved accuracy of 4.8% for Hit Rate with a window size of 20. Also the results of the proposed model are compared with the Recurrent Neural Network (RNN) and it is found that the accuracy for Hit Rate is improved by 15.6%. The correlation coefficient between the actual and predicted return for DNN is 17.1% more than RBFNN and it is 43.4% better than RNN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Stock prediction using deep learning

Loading next page...
 
/lp/springer_journal/stock-prediction-using-deep-learning-pju2t7OCc7
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4159-7
Publisher site
See Article on Publisher Site

Abstract

Stock market is considered chaotic, complex, volatile and dynamic. Undoubtedly, its prediction is one of the most challenging tasks in time series forecasting. Moreover existing Artificial Neural Network (ANN) approaches fail to provide encouraging results. Meanwhile advances in machine learning have presented favourable results for speech recognition, image classification and language processing. Methods applied in digital signal processing can be applied to stock data as both are time series. Similarly, learning outcome of this paper can be applied to speech time series data. Deep learning for stock prediction has been introduced in this paper and its performance is evaluated on Google stock price multimedia data (chart) from NASDAQ. The objective of this paper is to demonstrate that deep learning can improve stock market forecasting accuracy. For this, (2D)2PCA + Deep Neural Network (DNN) method is compared with state of the art method 2-Directional 2-Dimensional Principal Component Analysis (2D)2PCA + Radial Basis Function Neural Network (RBFNN). It is found that the proposed method is performing better than the existing method RBFNN with an improved accuracy of 4.8% for Hit Rate with a window size of 20. Also the results of the proposed model are compared with the Recurrent Neural Network (RNN) and it is found that the accuracy for Hit Rate is improved by 15.6%. The correlation coefficient between the actual and predicted return for DNN is 17.1% more than RBFNN and it is 43.4% better than RNN.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Dec 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off