Stock estimation, environmental monitoring and equilibrium control of a fish population with reserve area

Stock estimation, environmental monitoring and equilibrium control of a fish population with... For sustainable exploitation of renewable resources, the separation of a reserve area is a natural idea. In particular, in fishery management of such systems, dynamic modelling, monitoring and control has gained major attention in recent years. In this paper, based on the known dynamic model of a fish population with reserve area, the methodology of mathematical systems theory and optimal control is applied. In most cases, the control variable is fishing effort in the unreserved area. Working with illustrative data, first a deterministic stock estimation is proposed using an observer design method. A similar approach is also applied to the estimation of the effect of an unknown environmental change. Then it is shown how the system can be steered to equilibrium in given time, using fishing effort as an open-loop control. Furthermore, a corresponding optimal control problem is also solved, maximizing the harvested biomass while controlling the system into equilibrium. Finally, a closed-loop control model is applied to asymptotically control the system into a desired equilibrium, intervening this time in the reserve area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Stock estimation, environmental monitoring and equilibrium control of a fish population with reserve area

Loading next page...
1
 
/lp/springer_journal/stock-estimation-environmental-monitoring-and-equilibrium-control-of-a-P0StykhMre
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-012-9253-y
Publisher site
See Article on Publisher Site

Abstract

For sustainable exploitation of renewable resources, the separation of a reserve area is a natural idea. In particular, in fishery management of such systems, dynamic modelling, monitoring and control has gained major attention in recent years. In this paper, based on the known dynamic model of a fish population with reserve area, the methodology of mathematical systems theory and optimal control is applied. In most cases, the control variable is fishing effort in the unreserved area. Working with illustrative data, first a deterministic stock estimation is proposed using an observer design method. A similar approach is also applied to the estimation of the effect of an unknown environmental change. Then it is shown how the system can be steered to equilibrium in given time, using fishing effort as an open-loop control. Furthermore, a corresponding optimal control problem is also solved, maximizing the harvested biomass while controlling the system into equilibrium. Finally, a closed-loop control model is applied to asymptotically control the system into a desired equilibrium, intervening this time in the reserve area.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Jan 20, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off