Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, we propose an implicit gradient descent algorithm for the classic k-means problem. The implicit gradient step or backward Euler is solved via stochastic fixed-point iteration, in which we randomly sample a mini-batch gradient in every iteration. It is the average of the fixed-point trajectory that is carried over to the next gradient step. We draw connections between the proposed stochastic backward Euler and the recent entropy stochastic gradient descent for improving the training of deep neural networks. Numerical experiments on various synthetic and real datasets show that the proposed algorithm provides better clustering results compared to k-means algorithms in the sense that it decreased the objective function (the cluster) and is much more robust to initialization.
Journal of Scientific Computing – Springer Journals
Published: May 31, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.