Sterility of Males Determined by Functional Features of the Mouse Spermatozoa Bearing t-Complex

Sterility of Males Determined by Functional Features of the Mouse Spermatozoa Bearing t-Complex The mechanisms underlying normal spermatogenesis and its pathology expressed as male sterility determined by t-complex located on chromosome 17 in mice are considered in this review. t-Complex is a very convenient model with diverse markers of expression of the genes involved in development of the functional features of the spermatozoa bearing t-complex. These features include defects of mobility, capacitation, and acrosome reactions, which determine full or partial male sterility. It has been proposed that the defects of capacitation are also inherent in humans and affect male fertility. This homology is confirmed by the presence of the male gene Tcp11 in humans and demonstration of the fact that the protein TCP11 plays a leading role in modulation of the capacitation of murine spermatozoa. Hence it follows that the defects of human genes leading to incomplete binding of the fertilization promoting peptide could play a certain role in a decreased male fertility. All this is essential not only for deeper understanding of the biology of spermatozoa, but also for development of new therapeutic methods of finding and treating the pathology of spermatozoa. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Sterility of Males Determined by Functional Features of the Mouse Spermatozoa Bearing t-Complex

Loading next page...
 
/lp/springer_journal/sterility-of-males-determined-by-functional-features-of-the-mouse-u7t99Q5qLI
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1023/A:1015674422803
Publisher site
See Article on Publisher Site

Abstract

The mechanisms underlying normal spermatogenesis and its pathology expressed as male sterility determined by t-complex located on chromosome 17 in mice are considered in this review. t-Complex is a very convenient model with diverse markers of expression of the genes involved in development of the functional features of the spermatozoa bearing t-complex. These features include defects of mobility, capacitation, and acrosome reactions, which determine full or partial male sterility. It has been proposed that the defects of capacitation are also inherent in humans and affect male fertility. This homology is confirmed by the presence of the male gene Tcp11 in humans and demonstration of the fact that the protein TCP11 plays a leading role in modulation of the capacitation of murine spermatozoa. Hence it follows that the defects of human genes leading to incomplete binding of the fertilization promoting peptide could play a certain role in a decreased male fertility. All this is essential not only for deeper understanding of the biology of spermatozoa, but also for development of new therapeutic methods of finding and treating the pathology of spermatozoa.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off